Review and Assessment of the Rogue River in the Vicinity of the City of Medford Regional Water Reclamation Facility

Expert Opinion Report Prepared by Noah Hume, Stillwater Sciences, Portland, Oregon for Stoel Rives LLP, Portland Oregon.

February 1, 2019

Noah Hume, PhD Senior Aquatic Ecologist Stillwater Sciences

THIS PAGE INTENTIONALLY LEFT BLANK

EXPERT REPORT • FEBRUARY 1, 2019 Review and Assessment of the Rogue River in the Vicinity of the City of Medford Regional Water Reclamation Facility

PREPARED FOR

Stoel Rives, LLP 760 SW Ninth Avenue, Suite 3000 Portland, OR 97205

PREPARED BY

Noah Hume, PhD Stillwater Sciences 108 NW 9th Avenue, #200 Portland, OR 97209

Stillwater Sciences

Suggested citation:

Noah Hume, Stillwater Sciences. 2019. Review and Assessment of the Rogue River in the Vicinity of the City of Medford Regional Water Reclamation Facility. Expert Opinion Report Prepared by Noah Hume, PhD, Stillwater Sciences, Portland, Oregon for Stoel Rives LLP, Portland Oregon. February.

Cover photos: Stillwater Sciences Rogue River sampling reaches.

Table of Contents

1	INTROD	UCTION	1
	11 R	equest for Expert Opinion	1
	1.1 R	rofessional Background and Qualifications	1
	1112 St	tatement of Fees	2
	1112 Ju	formation Considered	2
	111.5 III 114 Pi	rior Expert Testimony	2
	12 B	ackoround	2
	1.2 D	revious Studies	3
	1.5 P	eview of Biological Community Assessment Methods and Metrics	3
	1.4 1	BMI Metrics	
	142	Perinhyton Metrics	11
	1.4.2	r enpiryon metres	
2	OVERVI	EW OF 2012-2013 STREAM CONDITION ASSESSMENTS	15
	2.1 St	ummary of Hafele (2013) Results	17
	2.1.1	Algae Summary	17
	2.1.2	BMI Summary	17
	2.2 St	ummary of Brown and Caldwell Results	
	2.2.1	Water Quality Summary	
	2.2.2	Algae Summary	
	2.2.3	BMI Summary	
	2.3 St	ummary of ODEQ (2014) Qualitative Reconnaissance Results	
	2.3.1	Water Quality Summary	
	2.3.2	Algae Summary	
	2.3.3	BMI Summary	
3	OCTOBE	ER 2018 SAMPLING METHODS AND RESULTS	
	3.1 Sa	ampling Design	
	3.2 0	uality Assurance	
	3.3 W	/ater Quality	
	3.3.1	Methods	
	3.3.2	Results	
	3.4 B	enthic Macroinvertebrates	
	3.4.1	Methods	33
	3.4.2	Results	33
	3.5 Pe	eriphyton	
	3.5.1	Methods	
	3.5.2	Results	
4	ANALYS	SIS AND ASSESSMENT	40
	4.1 C	omparisons of 2012–2013 and 2018 Assessments	
	4.1.1	Water Quality	
	4.1.2	Selected BMI Metrics	
	4.1.3	Selected Periphyton Metrics	
		L	

	4.2 Di	scussion	
	4.2.1	Statewide narrative criteria—OAR 340-041-0007(9)-(13)	
	4.2.2	Biocriteria—OAR 340-041-0011	44
5	CONCLU	SIONS AND RECOMMENDATIONS	
6	REFERE	NCES	
Ta	bles		1· 1
Ta	ble 1-1. Sel	ected benthic macroinvertebrate indicators from review of 2012-2013 stud	dies and
T-	rele	evant biocriteria sources	
	ble 2-1. Sur	nmary of Sampling Design, Site Conditions and Sampling Methods	
Та	ble 2-2. Sur	nmary Table of Hatele (2013) Invertebrate Results	
Та	ble 2-3. Bro	own and Caldwell (2014) Summary of Continuous Probe Results	
Та	ble 2-4. Bro	own and Caldwell (2014) Nutrient Sampling Results	
Та	ble 2-5. Sur	nmary Table of Brown and Caldwell (2014) Invertebrate Results	
Та	ble 2-6. Doi	minant Algal Taxa from ODEQ (2014) Rock Scrapes	
Та	ble 3-1. Oct	ober 2018 sampling locations	
Та	ble 3-2: In s	situ and analytical water quality methods	
Ta	ble 3-3. In s	itu water quality, substrate, and cover estimates at October 2018 study sit	tes 31
Та	ble 3-4: An	alvtical results for nutrients at October 2018 study sites	32
Ta	ble 3-5: Su	mmary of BMI results at October 2018 study sites	34
To	hla 3.6. Su	mmary of EPA (Barbour et al. 1999) diatom biotic integrity metrics result	
10	Die 5-0. Sul	where 2018 study sites	.5 ai 20
		10001 2010 study sites	

Figures

Figure 2-1. Medford RWRF vicinity map for 2012–2013 sampling events	. 16
Figure 2-2. Hafele (2013) Algae Density and Biovolume	. 17
Figure 2-3. Brown and Caldwell Algae Density and Biovolume	. 21
Figure 3-1. Medford RWRF vicinity map for October 2018 sampling event	. 28
Figure 3-2. Diatom Cell Density and Biovolume estimates at October 2018 study sites	. 37

Appendices

Appendix A	Professional	Background	and Q	ualifications

- Appendix B Statement of Fees
- Appendix C October 2018 Analytical Water Quality Data Reports
- Appendix D Supplemental October 2018 BMI Results and Laboratory Identification
- Appendix E Supplemental October 2018 Periphyton Results and Laboratory Identification

1 INTRODUCTION

1.1 Request for Expert Opinion

Stoel Rives LLP has requested an expert opinion regarding water quality and ecological conditions of the Rogue River in the vicinity of the City of Medford's Regional Water Reclamation Facility (RWRF) wastewater outfall. Specifically, Stoel Rives LLP requested that Stillwater Sciences:

- 1. Conduct a detailed assessment of the existing data available (the previous studies identified *infra* in Section 1.5) and conduct additional sampling in riffle habitats in the Rogue River both upstream and downstream of the RWRF with the purpose of examining changes in ecological conditions; and
- 2. Based on the above information (as well as other available data and literature), evaluate the RWRF's potential contributions to those conditions, as relevant to several Oregon narrative water quality standards. These standards are the biocriterion standard at Oregon Administrative Rule (OAR) 340-041-0011 and other narrative standards at OAR 340-041-0007(9) (deleterious fungi and other growths); OAR 340-041-0007(10) (deleterious conditions); OAR 340-041-0007(11) (deleterious deposits); OAR 340-041-0007(12) (objectionable discoloration and other specified conditions); and OAR 340-041-0007(13) (offensive aesthetic conditions).

Stillwater Sciences was not asked to form an opinion on whether the discharges from the RWRF comply with the National Pollutant Discharge Elimination System (NPDES) Permit 100985, issued by the Oregon Department of Environmental Quality (DEQ).

1.1.1 Professional Background and Qualifications

My qualifications to render the opinions contained in this report are set forth in my resume attached hereto as Appendix A and incorporated herein by reference. As noted in my resume, in summary, my qualifications are as follows:

I received a B.S. in Mechanical and Ocean Engineering from the University of Rhode Island in 1985, an M.S. in Civil and Environmental Engineering from the University of California at Berkeley in 1989, and a Ph.D. from U.C. Berkeley in Ecological Engineering in 2000. Since joining Stillwater Sciences in 2000, I estimate that I have over three or four thousand hours devoted to studies related to the interaction of physical habitat and water quality conditions upon aquatic beneficial uses of water in rivers, lakes, wetlands, and estuaries. Specifically related to this expert opinion, I have prior experience on the Mackenzie River Oregon, and Tuolumne River, California in examining benthic macroinvertebrate community responses to changes in flow regime, temperature, sediment supply and transport. I have conducted a multi-year assessment of the interactions of treated wastewater discharges with riverine and estuarine portions of the lower Santa Clara River in Ventura, California, including BMI community and fishery responses to varying levels of treated wastewater discharge.

In the past ten (10) years, I have not submitted peer reviewed articles for journal publication.

1.1.2 Statement of Fees

Attached as Appendix B is a statement of fees charged by Stillwater Sciences through January 31, 2019, as well as a fee schedule showing the hourly rates that will be charged for further study and testimony.

1.1.3 Information Considered

My opinion is based on my familiarity with the general literature on aquatic ecology and bioassessment, prior field studies and data analysis of water quality, algae, and benthic macroinvertebrate assemblages in riverine settings. Specific information considered in this report include the review, in total or in part, of the following:

- 1. Pertinent reports regarding RWRF and other influences on water quality conditions in the Rogue River listed in Section 1.4.
- 2. Literature and information sources listed in the "References" section of this report,
- 3. Data collected in October 2018 by Stillwater Sciences (raw data included as Appendices C, D, and E)
- 4. Selected materials from ODEQ, available upon request.

1.1.4 Prior Expert Testimony

In the past four (4) years, I have not provided testimony at a trial or by deposition in any legal proceedings.

1.2 Background

The RWRF discharges secondary-treated municipal wastewater to the Rogue River along its south (left) bank in Jackson County, Oregon at river mile (RM) 130.5. The RWRF has a design average dry weather outflow of 31 cubic feet per second (cfs) and hydraulic capacity of 149 cfs during wet weather events. The RWRF discharges into the Rogue River within the Middle Rogue River Sub-basin (HUC 17100308). The middle and upper portions of the Rogue River are located northeast of the Siskiyou Mountains and along the western edge of the Cascade Mountains, with its headwaters near Crater Lake. The RWRF's discharges are authorized by NPDES Permit 100985, issued by the Oregon DEQ.

Designated beneficial uses of water in this portion of the Rogue River include public and private domestic water supply, industrial water supply, irrigation, livestock watering, fish and aquatic life (including rearing/migration and spawning), wildlife and hunting, fishing, boating, water contact recreation, aesthetic quality, and commercial navigation & transportation (OAR 340-041-0271, Table 271A). Several total maximum daily load (TMDL) assessments have been implemented to address historical Clean Water Act (CWA) Section 303(d) listings for the river and its tributaries. TMDLs were established in 1992 for Bear Creek to address non-attainment of standards for pH, aquatic weeds and algae, and dissolved oxygen (DO). Additional parameters were addressed in a 2007 TMDL for the Bear Creek watershed, including phosphorus, DO, chlorophyll a, pH, ammonia, temperature and fecal coliform. Completed in 2008, the Rogue Basin TMDL addressed high levels of bacteria as well as temperature standards for migration and rearing of salmon and trout.

On December 20, 2018, EPA approved Oregon's 2012 CWA Section 303(d) List which included listing water quality limited segments for biocriteria (OAR 340-041-0011) in portions of the Middle Rogue River from RM 132.2, upstream of the City of Medford RWRF, downstream to RM 110.7 near the confluence of Evans Creek at the City of Rogue River, Oregon. The section

below summarizes data submitted in support of the recent 303(d) listing, as well as other information related to the biocriteria standard and the potential influence of the Medford RWRF on water quality conditions in the Rogue River relevant to the standard.

1.3 Previous Studies

Three previous studies of water quality, algal growth and/or the benthic macro-invertebrate (BMI) community data were conducted in 2012 and 2013 upstream and downstream of the City's wastewater outfall to assess the biological integrity of the Rogue River outside the City's regulatory mixing zone in the river¹:

- *Medford Regional Water Reclamation Facility Outfall Assessment Study* (Hafele 2013), conducted in October 2012.
- Rogue River Algae Reconnaissance: A Response to the Algae Concerns Related to the Medford RWRF (ODEQ 2014), conducted in October 2013.
- *Medford Regional Water Reclamation Facility: Mixing Zone and Biological Assessment Study.* (Brown & Caldwell 2014), conducted in October 2013.

1.4 Review of Biological Community Assessment Methods and Metrics

In ODEQ's (2018) Draft Assessment methodology assessing water quality limited waters pursuant to CWA Sections 303(d) and 305(b) and OAR 340-041-0046), biological community assessments are used to indicate aquatic life beneficial use support. Assessment of biocriteria in Oregon and other states relies upon the use of reference conditions (e.g., Hughes et al 1986, Reynoldson et al. 1997) as the basis of comparison, sometimes using results from a wide range of sites rather than relying on information from one or a few control sites. However, some indicator metrics react to multiple factors or may have naturally different values within different regions. At present, listing decisions related to biocriteria may be determined by several approaches, with the preferred approach based upon application of regional scoring thresholds derived from ratios of observed and modeled (i.e., expected) species richness of the BMI assemblage at a range of reference sites using results from ODEQ's Predictive Assessment Tool for Oregon, or PREDATOR model (Hubler 2008).

Conducting bioassessments in environmentally diverse regions within Oregon is complicated by the inability of some component metrics to provide consistent meaning in different environmental settings. As part of its Integrated Report improvement efforts, DEQ convened a technical review panel in the fall of 2017 to solicit independent scientific and technical input regarding the biocriteria impairment thresholds. In addition to questions regarding data availability, peer review comments recognized that the PREDATOR model may not be readily applied to all locations because the model results are based on similarity of taxonomic composition of the BMI assemblage between test and reference sites which may differ from the smaller rivers and streams used to calibrate the model to reference conditions. For example, because gravel transport and fluvial processes in the Rogue River are interrupted by the William Jess Dam at RM 158 (upstream of the City's discharge), and because historical as well as present day discharges have been associated with excess nutrients, algae, and other water quality issues along the upper Rogue River (ODEQ 2014), the benthic community composition of the Rogue River would be expected

¹ Schedule A, Section 1.e., of the NPDES permit establishes the Regulatory Mixing Zone (RMZ) for the City's effluent discharge as that portion of the Rogue River contained within a band up to 100 feet from the south bank of the river and extending from a point 10 feet upstream of the outfall to a point 300 feet downstream of the outfall.

to differ from regional reference conditions assessed by the PREDATOR model. Recognizing such limitations, ODEQ allows that other approaches may be appropriate for specific cases and data sets. For example, "... study designs may look at upstream-downstream changes in macroinvertebrate community composition and function and provide valid information using multi-metric indices (MMIs) or simple metrics such as total richness, dominance, non-insect taxa, tolerance, etc." Additionally, "other aquatic communities such as fish and algae are considered equally valid for assessing the biological integrity of freshwater systems."

Water quality, habitat conditions, and biological communities vary widely within river systems both spatially and temporally. Pollutants are often dispersed or altered very quickly after they are discharged such that they will not be detected at locations far from the discharge point, or perhaps intermittent discharges might not be detected by infrequent measurements. Because of their ability to integrate pollutant exposures temporally, stream insects and other biological indicators have been developed as surrogate measures of water quality and habitat conditions as well as to represent unmeasured biota (Karr and Chu 1999; Rosenberg and Resh 1996). The sections below examine the rationale for quantitative biocriteria applied by the three studies, potential use of alternative criteria, and select measures that may be used to indicate aquatic life beneficial use support.

1.4.1 BMI Metrics

Biological impairment may be caused by a number of factors, including organic enrichment from point source discharges, scour and sediment effects, habitat alterations, changes to the riparian zone, or toxicological effects. A number of approaches have been used to detect or quantify changes in aquatic communities as a measure of such disturbances, including presence/absence of indicator taxa; changes in community statistics such as species richness, diversity, and evenness measures; by multivariate statistics; as well as by use of multimetric indices (Rosenberg and Resh 1996, Barbour and Yoder 2000). Various BMI metrics have been used to indicate impairment including: (1) absence of pollution-sensitive taxa, especially from the orders Ephemeroptera (mayflies), Plecoptera (stoneflies) and Trichoptera (caddisflies) (also known as the EPT group); (2) excessive dominance of pollution-tolerant taxa, such as non-insect macroinvertebrates (e.g., worms and snails); (3) low overall numbers of taxa, or (4) other perceptible differences in assemblage structure relative to a reference site, such as changes within functional feeding group (FFG) dominance. Table 1-1 presents metrics used by Hafele (2013), Brown and Caldwell (2014), Oregon Water Quality Interagency Workgroup (WOIW 1999), the California Stream Condition Index (Rehn et al. 2015), and California (CA) North Coast B-IBI (Rehn et al. 2005). Selection of appropriate biocriteria metrics in assessing anthropogenic influences is complicated by the subjectivity in some component metrics, substitution of individual taxa in the metrics. insensitivity to changes in water quality, natural variations in conditions and communities, as well as applicability to particular river systems (Capmourteres et al. 2018, Mazor et al. 2016). While Table 1-1 does not show uniformity among studies and region-specific index metrics, it does suggest common inferences related to disturbances as indicated by various selected metrics. These studies and indices present richness and sensitivity (tolerance or intolerance) to pollution metrics as unifying indicators of biotic integrity and disturbance.

Metric	Hafele (2013)	Brown and Caldwell (2014)	Oregon WQIW (1999)	North Coastal CA IBI (Rehn et al. 2005)	CSCI (Rehn et al. 2015)	Stillwater Sciences (2018)				
Abundance and Diversity Metrics										
Total Abundance	Х	Х				Х				
EPT Abundance	Х	Х				Х				
Shannon Diversity Index										
Bray-Curtis percent similarity						Х				
		Richness I	Metrics							
Taxa Richness	Х	Х	Х		Х	Х				
Shredder Richness					Х					
EPT Richness	Х	Х		Х		Х				
Coleoptera Richness				Х						
Diptera Richness				Х						
Collector Richness										
Predator Richness										
Mayfly Richness			Х							
Stonefly Richness			Х							
Caddisfly Richness			Х							
		Composition	n Metrics							
Percent Coleoptera Taxa					Х					
Percent Oligochaeta	Х	Х								
Percent EPT Taxa					Х					
Percent Predator Individuals				Х						
Percent Non-Insect Taxa	Х	Х		Х		Х				
		Sensitivity	Metrics							
Percent Intolerant Individuals	Х	Х		Х	Х	Х				
Percent Tolerant Taxa			Х			Х				
Percent Dominant Taxa		Х	Х			Х				
Percent Sediment Tolerant Taxa			Х							
Number Sensitive Taxa			Х							
Percent Sensitive EPT	Х									
Number Sediment Sensitive Taxa			Х							
Percent Clinger Taxa		Х			Х					
Modified Hilsenoff Biotic Index			X							

Table 1-1. Selected benting macromodel tentate multators monineriew of 2012-2013 studies and relevant biochtena source	Table 1-1.	Selected benthic	macroinvertebrate	indicators from	m review of 2012-2	013 studies and relevan	t biocriteria sources
---	------------	------------------	-------------------	-----------------	--------------------	-------------------------	-----------------------

Metric	Hafele (2013)	Brown and Caldwell (2014)	Oregon WQIW (1999)	North Coastal CA IBI (Rehn et al. 2005)	CSCI (Rehn et al. 2015)	Stillwater Sciences (2018)					
Functional Feeding Group (FFG) Metrics											
Percent Shredder Taxa		Х		Х							
Percent Non-Gastropod Scraper				Х							
Individuals											

The metrics selected for this study included several types: abundance, richness, composition, sensitivity, and FFG measures. Metrics that measure abundance, composition, and FFGs were selected largely for the purpose of comparison to the Hafele (2013) and Brown and Caldwell (2014) studies. Metrics that measure richness and sensitivity were selected based on their use in reference indices or for comparison with the Hafele (2013) and Brown and Caldwell (2014) studies. The description, type of disturbance, typical response, and rationale for selecting or not selecting the metric are discussed below:

Bray-Curtis percent similarity: This measure describes the overlap in BMI community composition in relation to another sample, and represents similarity in terms of both the number and abundance of each taxon (Bray and Curtis 1957). This metric was selected to quantify the similarity or dissimilarity in terms of taxonomic composition within and among sites, as well as the natural variance within and among sites. The metric is strictly comparative in nature and does not provide insight on stressors or overall ecosystem health.

Total abundance: This is the total number of BMI individuals counted, or calculated, in a sample. Despite some uncertainty due to patchiness,² as well as uncertainties regarding representation of the BMI community due to the capture efficiency of differing equipment for particular taxa³, this metric was selected for its value as a general indicator of environmental change and its use by Hafele (2013) and Brown and Caldwell (2014). For example, total abundance is generally thought to be increased in nutrient-enriched environments, such as an effluent plume from a wastewater treatment plant (Marcogliese et al. 2015), and more likely to decrease with increased scour disturbance (Matthaei et al. 2010; Declan and Gottelli 2000).

Total taxa richness: This is the number of distinct taxa, which is used as a proxy for diversity within a sample (Resh et al. 1995). This metric was selected because it was used by Hafele (2013) and Brown and Caldwell (2014), and for its biotic integrity characterization value as described by other sources (Rehn et al. 2015; Rehn et al. 2005; and Barbour et al. 1999). While non-specific to particular stressors, increased disturbance is generally expected to decrease taxa richness (Barbour et al. 1999). In reviews of multiple studies in riverine settings, however, it has been suggested that richness may be maximized at intermediate levels of disturbance (Stoddard et al 2006).

EPT abundance: This is the total number of individuals from the EPT group counted in or calculated for the sample. This metric was selected for its value as general indicator of environmental change and use by Hafele (2013) and Brown

² Due to the natural patchiness of benthic macroinvertebrate communities in riffle habitats, large numbers of sampling replicates are typically required to produce useful estimates at a 95% confidence level (Rosenberg et al. 1998). For this reason, BMI abundance estimates for the Rogue River referenced in this report should be considered indicators of relative abundance.

³ Storey et al. (1991) suggested that Kick-net sampling appears to be biased toward collecting more abundant taxa and under-represent low-occurrence taxa. Moreover, Hornig and Pollard (1978) hypothesized that the Kick-net sampling technique will represent more easily dislodged and mobile taxa, whereas other gear (e.g., Surber, Hess) utilizing mechanical abrasion will represent more cryptic or closely adherent taxa.

and Caldwell (2014). For example, EPT abundance decreases with low water flow and increased fine sediment (Beermann 2017) as well as increased nutrient loading (Wang 2007, Weber 1973).

EPT taxa richness: This is the number of taxa present from the three EPT orders. This metric was selected because it was used by Hafele (2013) and Brown and Caldwell (2014), and for its biotic integrity characterization value as described by Rehn et al. 2005 and Barbour et al. (1999). For example, EPT taxa richness is particularly susceptible to nutrient enrichment (Wang 2007, Weber 1973).

Percent tolerant individuals: This is the percent of the invertebrate community made up of individuals that are considered tolerant to organic enrichment. Tolerance values are based on correlations of species (or taxa) persistence and level of organic enrichment (Hilsenhoff 1987, Chang et al. 2013). This metric was selected to contrast with percent intolerant individuals, and for its biotic integrity characterization value as described by WQIW (1999) and Barbour et al. (1999).

Percent intolerant individuals: This is the percent of the invertebrate community made up of individuals that are considered intolerant to organic enrichment. Tolerance values are based on the correlation between species persistence and level of organic enrichment (Hilsenhoff 1987, Chang et al. 2013). While there is little evidence of high organic loadings of BOD from the RWRF or other point sources to the Rogue River, this metric was selected because it was used by Hafele (2013) and Brown and Caldwell (2014), and for its biotic integrity characterization value as described by other sources (Rehn et al. 2015, Rehn et al. 2005, and Barbour et al. 1999).

Percent non-insect individuals: This is the percentage of the BMI organisms that are not insects. This metric was selected because it was used by Hafele (2013) and Brown and Caldwell (2014), and for its biotic integrity characterization value as described by Rehn et al. 2005 and Barbour et al. (1999). For example, non-insect taxa are generally tolerant of a wider range of environmental conditions (e.g. water flow and water temperatures) than insect taxa (DeShon 1995, Barbour et al. 1999).

Percent dominant taxon: This measures the dominance of a given number of the most abundant taxon or taxa (i.e., top 3 taxa). This metric was selected because it was used by Brown and Caldwell (2014), and for its biotic integrity characterization value as described by WQIW (1999) and Barbour et al. (1999). Community complexity is expected to decrease with Increasing diversity correlates with decreased health of the assemblage and suggests that niche space, habitat, and food sources are not adequate to support survival and propagation of many species, leading to fewer taxa being present and thus a few taxa being more dominant (Barbour et al. 1999).

Metrics used by Hafele (2013) and Brown and Caldwell (2014) and not selected for the 2018 study:

Percent shredders: This is the percent of individuals in the sample which have morphological adaptations to tear coarse particulate organic matter (CPOM) such as leaves and wood. Shredders are particularly sensitive to organic enrichment due to the effects nutrients have on the microbial and fungal community and, in turn, on CPOM decomposition. As such, shredders are often used as indicators of organic enrichment in low order streams. This metric was included in Brown and Caldwell (2014) and showed a decrease downstream of the RWRF outfall. However, the amount of CPOM naturally decreases from low to higher order streams (Graça et al. 2001); thus, the relative abundance of shredders is also expected to decrease. This metric may not be appropriate for higher order streams, such as the Rogue River, because shredders are expected to make up a smaller portion of the BMI community and be more irregularly concentrated. For this reason, this metric was not considered appropriate for this study.

Percent clingers: This is the percent of insects with fixed retreats or adaptations for attachment to surfaces in flowing water. This metric is often used as a measure of sediment deposition and scour (Barbour et al. 1999; Rabeni et al. 2005). While this metric was included in Brown and Caldwell (2014) and showed a decrease downstream of the RWRF outfall, due to the lack of any expected or known linkage between the RWRF discharge and alterations in sediment deposition and scour, and because no comparative habitat data were collected at the 2013 sampling sites, this metric was not selected for this study.

Percent Oligochaeta: This is the percent of Oligochaeta (segmented worms) individuals in the total sample (i.e. the percentage of total abundance comprised of oligochaetes). While there is little evidence of high organic loadings of BOD from the RWRF or other point sources to the Rogue River, Oligochaeta are generally associated with poor stream conditions in terms of fine sediment, low dissolved oxygen availability, high water temperature, pH variability, and nutrient enrichment due to the subclass's persistence in a wide range of environmental conditions. However, this metric was not selected due to its variability as an indicator (Barbour et al. 1999) and its redundancy with other metrics such as total abundance, percent non-insect individuals, percent tolerant individuals.

Percent Sensitive EPT: This is the number of EPT taxa particularly sensitive to organic enrichment. This metric is expected to decrease with organic enrichment. This metric was not selected due to its redundancy with percent sensitive individuals and inclusion of other EPT metrics in this study.

Common BMI metrics used in other aquatic bioassessments and not selected for the 2018 study:

Coleoptera Richness: This is the number of Coleoptera (beetle) taxa in the sample. While Coleoptera can be expected to decrease with sediment enrichment, they can have variable results as indicators (Erye et al. 1990, Ode et al. 2005). This metric is not commonly used without rigorous testing due to its variability as an indicator. As a result, this metric was not selected.

Shredder Richness: This is the number of taxa with physical adaptions that allows tearing of course particulate organic matter. This metric is expected to decrease with increased physical disturbance and nutrient enrichment. This metric was not selected due to the redundancy with other metrics and lack of comparable results in previous studies by Hafele (2013) and Brown and Caldwell (2014).

Diptera Richness: This is the number of Dipteran (fly) taxa. This metric is expected to decrease with increased physical disturbance and nutrient enrichment. This metric was not selected due to the redundancy with other metrics and lack of comparable results in previous studies by Hafele (2013) and Brown and Caldwell (2014).

Collector Richness: This is the number of taxa with physical adaptions for collecting fine particulate organic matter. This metric is expected to decrease with increased physical disturbance and nutrient enrichment. This metric was not selected due to the redundancy with other metrics and lack of comparable results in previous studies by Hafele (2013) and Brown and Caldwell (2014).

Predator Richness: This is the number of taxa with exclusively predatory behavior (i.e. obligate predators). This metric is expected to decrease with increased physical disturbance and nutrient enrichment. However, many predatory taxa can persist in a wide range of environmental conditions. As a result, the metric can have variability as an indicator metric. This metric was not selected due to its lack of reliability as an indicator, redundancy with other metrics, and lack of comparable results in previous studies by Hafele (2013) and Brown and Caldwell (2014).

Mayfly Richness: This is the number of Ephemeroptera taxa. This metric is expected to decrease with increased physical disturbance and nutrient enrichment. This metric was not selected due to the inclusion of Ephemeroptera taxa as part of EPT richness.

Stonefly Richness: This is the number of Plecopteran taxa. This metric is expected to decrease with increased physical disturbance and nutrient enrichment. This metric was not selected due to the inclusion of Plecopteran taxa as part of EPT richness.

Caddisfly Richness: This is the number of Trichopteran taxa. As with other richness metrics discussed above, this metric is expected to decrease with increased physical disturbance and nutrient enrichment. This metric was not selected due to the inclusion of Trichopteran taxa as part of EPT richness.

Percent Coleoptera Taxa: This is the percent of total abundance comprised of Coleopteran individuals. This metric is not commonly used without rigorous sitespecific testing due to its variability as an indicator. As a result, this metric was not included.

Percent EPT Taxa: This is the percent of EPT taxa from total abundance. See EPT abundance for more information.

Percent predator individuals: This is the percent of total abundance represented by the predator functional feeding group, which can be made restrictive to exclude omnivores. While this metric tends to increase with physical disturbance and organic enrichment, there is variability in its response to these stressors. This metric was not selected due to variability as an indicator and lack of comparable results in previous studies by Hafele (2013) and Brown and Caldwell (2014).

Percent Sediment Tolerant Taxa: This is the percent of taxa tolerant to sediment increases. This metric was not selected because the Medford RWRF would not be expected to be the source of sediment-related disturbances.

Number Sensitive Taxa: This is the number of taxa sensitive to organic enrichment. This metric is expected to decrease with organic enrichment. This metric was not selected due to its lack of comparability to previous studies and redundancy with other metrics such as EPT richness, total richness, percent EPT, and percent sensitive individuals.

Number Sediment Sensitive Taxa: This is the number of taxa tolerant to sediment increases. This metric was not selected because the Medford RWRF would not be expected to be the source of sediment-related disturbances.

Modified Hilsenhoff Biotic Index: This metric uses unique taxa tolerance values and their relative abundance to create an average value for a sample. Hence, it measures the overall organic enrichment tolerance value of a sample. While this can be a particularly useful metric for visualizing organic enrichment in any given area, there is some redundancy with percent sensitive and tolerant individuals. As a result, it was not selected.

Percent Non-Gastropod Scraper Individuals: This measures the percent of non-gastropod (snails/slugs) scrapers in the sample. This metric is expected to be particularly sensitive to physical disturbance and organic enrichment than percent scrapers. This metric was not selected as it can be biased to habitat type and percent scrapers is a component of a selected metric.

1.4.2 Periphyton Metrics

DEQ has not yet established metrics, indices or predictive models for periphyton. In the absence of prescribed metrics and predictive models, metrics of community composition and function may be used in certain study designs, especially in assessing point-source impacts (ODEQ 2018). For example, changes in community composition can be used to diagnose the environmental stressors affecting biotic integrity and ecological health (Stevenson 1998, Stevenson and Pan 1999). As with BMI indices, periphyton metrics prescribed for use within certain states or regions may not be recommended for other regions. Nevertheless, metrics established for other regions can provide valuable information for comparative metric selection and index of biotic integrity development. For this reason, the EPA (Barbour et al. 1999) investigated metrics used successfully in multiple regions.

In Barbour et al. (1999), various periphyton metrics were identified as potential indicators of biotic integrity and impairment that could be used as a starting point for generation of region-

specific indices or for comparative analysis. Metrics were divided into two groups which could be helpful in developing an index of biotic integrity. Metrics in the first group (species and generic richness, Shannon diversity, etc.) characterize biotic integrity ("natural balance in flora and fauna...." as in Karr and Dudley [1981]) without specifically diagnosing ecological conditions and causes of impairment. Therefore, the first group renders itself useful for comparative purposes. The second group of metrics more specifically diagnose causes of impaired biotic integrity. However, the metrics from the second group would require rigorous calibration via a robust dataset for the intended region. An ideal index would include metrics from both groups. However, the purpose of this study in not to create an index, but rather to compare the biotic integrity prior to influence from the RWRF outfall and after. As such, comparative metrics which measure biotic integrity have been adopted from Barbour et al. (1999). Additionally, metrics reported by Hafele (2013) and Brown and Caldwell (2014) have also been selected for comparison purposes. The description, type of disturbance, typical response, and rationale for selection have been listed below:

Percent community similarity (PSc) of diatoms: As with the Bray-Curtis Similarity used to assess BMI community similarity (see Section 1.4.1), the PSc is used in algal bioassessment to show community similarities based on relative abundances of individual taxa, and in doing so, gives more weight to dominant taxa than rare ones (Barbour et al. 1999). PSc can be used to compare control and test sites, or average community composition of a group of control or reference sites with a test site. This metric was selected due to its value in biotic integrity characterization as described by Barbour et al. (1999). However, percent community similarity values ranging from 0 (no similarity) to 100% (complete similarity) do not inherently indicate good or poor ecological conditions.

Cell density: The number of algal cells per centimeter squared. Increases in the density and volume of algae growing on stream substrates can result from increases in light, temperature, and/or nutrients (Hynes 1972). This metric was selected due to its inclusion by Hafele (2013) and Brown and Caldwell (2014).

Biovolume: The volume of algae, usually measured as the cubic microns of algae per centimeter squared. Increases in the density and volume of algae growing on stream substrates can result from increases in light, temperature, and/or nutrients (Hynes 1972). This metric was selected due to its inclusion by Hafele (2013) and Brown and Caldwell (2014).

Dominant taxon and percent dominant taxon: The top three most abundant taxa Used as a as a comparative descriptor in Hafele (2013) and Brown and Caldwell (2014), this is the total number of the three most abundant organisms divided by the total number sorted from the sample. Community complexity is expected to decrease with increasing environmental perturbation, leading to fewer taxa being present and thus a few taxa being more dominant (Barbour et al. 1999). This metric was selected due to inclusion by Hafele (2013) and Brown and Caldwell (2014).

Species richness: This is an estimate of the number of diatom species in a sample. High species richness is assumed to indicate high biotic integrity because many species are adapted to the conditions present in the habitat. Species richness is predicted to decrease with increasing pollution because many species

may become stressed. However, many habitats may be naturally stressed by low nutrients, low light, or other factors. Slight increases in nutrient enrichment can increase species richness in headwater and naturally unproductive, nutrient-poor streams (Barbour et al. 1999). This metric was selected due to its inclusion by Hafele (2013) and Brown and Caldwell (2014), and for its biotic integrity characterization value described by Barbour et al. (1999).

Shannon's diversity index of diatoms: The Shannon Index is a function of both the number of species in a sample (species richness) and the distribution of individuals among those species (evenness). Low species diversity has historically been successfully used as an indicator of organic (sewage) pollution (Wilhm and Dorris 1968, Weber 1973, Cooper and Wilhm 1975). Bahls et al. (1992) uses Shannon diversity because of its sensitivity to water quality changes (Barbour et al. 1999). Typical values are between 1.5 and 3.5 in most ecological studies, and the index is rarely greater than 4. The Shannon diversity index increases as both the richness and the evenness of the community increase. This metric was selected due to its value in biotic integrity characterization as described by Barbour et al. (1999).

Percent sensitive diatoms: The percent sensitive diatoms metric is the sum of the relative abundances of all intolerant species. Sensitive diatoms are those with the value of 3. This metric was selected due to its value in biotic integrity characterization as described by Barbour et al. (1999).

Percent tolerant diatoms: The percent tolerant diatoms metric is the sum of the relative abundances of all tolerant species. Tolerant diatoms are those with the value of 1. This metric was selected as a proxy for the abundance of tolerant diatoms used by Brown and Caldwell (2014), and for its value for biotic integrity characterization as described by Barbour et al. (1999).

Pollution Tolerance Index (PTI) of diatoms: The PTI for algae resembles the Hilsenhoff biotic index for macroinvertebrates (Hilsenhoff 1987). Lange-Bertalot (1979) distinguishes three categories of diatoms according to their tolerance to increased pollution, with species assigned a value of 1 for most tolerant taxa (e.g., *Nitzschia palea*) to 3 for relatively sensitive species. Thus, Lange-Bertalot's PTI varies from 1 for most polluted to 3 for least polluted. This metric was selected due to its value in biotic integrity characterization as described by Barbour et al. (1999).

Percent Achnanthes minutissima: This species is a cosmopolitan diatom that has adapted to a very broad range of ecological conditions. It is an attached diatom and often the first species to pioneer a recently scoured site, sometimes to the exclusion of all other algae. The percent abundance of *A. minutissima* has been found to be directly proportional to the time that has elapsed since the last scouring flow or toxicity event. For use in bioassessment, the quartiles of this metric from a population of sites has been used to establish judgment criteria, e.g., 0-25% = no disturbance, 25-50% = minor disturbance, 50-75% = moderate disturbance, and 75-100% = severe disturbance (Barbour et al. 1999). This

metric was selected given its value for biotic integrity characterization as described by Barbour et al. (1999).

Descriptive diatom autecological attributes percentages: The percent of individuals with specific autecological attributes (i.e., N-fixers, indicators of high P or N, indicators of low P or N, and trophic state). While more complex metrics utilizing these attributes are suggested by Barbour et al. (1999), caution is advised when specifically diagnosing causes of impaired biotic integrity. Rigorous calibration via a robust dataset for the intended region would be required for use of metrics suggested by Barbour et al. (1999). For this reason, the simple autecological metrics selected for this study are descriptive and not diagnostic. These descriptive diatom autecology percentages were selected due to similar inclusions of autecological attributes in Hafele (2013) and Brown and Caldwell (2014).

2 OVERVIEW OF 2012-2013 STREAM CONDITION ASSESSMENTS

The purpose of this section is to summarize and compare the results of the Hafele (2013), Brown and Caldwell (2014), and ODEQ (2014) studies that assessed conditions in the Rogue River during autumn at locations both upstream and downstream of the RWRF outfall. Each of the studies "sampled" at least three of the same sites around the same season: Hafele (2013) in mid-October of 2012, Brown and Caldwell (2014) in mid-October of 2013, ODEQ (2014) in late-September 2013. The current study by Stillwater Sciences sampled these same sites in early October of 2018 (see Section 3). The Hafele (2013), Brown and Caldwell (2014), and Stillwater Sciences studies quantitatively assess the conditions upstream and downstream of the RWRF outfall; however, the ODEQ (2014) simply sets out to qualitatively review areas of possible biocriteria concern throughout a larger portion of the Rogue River. Therefore, methods and results of the Hafele (2013) and Brown and Caldwell (2014) studies, but not ODEQ are detailed in this section.

Description	Hafele (2013)	Brown and Caldwell (2014)	ODEQ (2014)
Sites Sampled			
Upper TouVelle Park		Riffle 1	
Lower TouVelle Park upstream of RWRF Outfall	Upper Site (US1)	Riffle 2	Lower 2
1st riffle downstream of RWRF Outfall	Lower Site 1 (LS1)	Riffle 3	Lower 3
2nd riffle downstream of RWRF Outfall	Lower Site 2 (LS2)	Riffle 4	Lower 4
3rd riffle downstream of RWRF Outfall		Riffle 5	
Sampling Design and Methods			
BMI	2 composites per site, composed of 8 kick net samples	2 composites per site, composed of 8 box type samples	Visual
Algae	USGS (Carpenter 2003)	USGS (Carpenter 2003)	Visual
Sampling Dates and Conditions			
Sampling Dates	Oct 10 - 11, 2012	Oct 14 - 17, 2013	Sep 25, 2013
Last Rain Event	8 weeks prior	2 weeks prior	~2 weeks prior
Avg. Stream Discharge (cfs)	1,413	1,504	1,706

 Table 2-1. Summary of Sampling Design, Site Conditions and Sampling Methods

Figure 2-1. Medford RWRF vicinity map for 2012-2013 sampling events

2.1 Summary of Hafele (2013) Results

Using an alternative sampling and assessment design consistent with ODEQ (2018), the Hafele (2013) study primarily focused on obtaining basic algae and BMI comparative data upstream and downstream of the RWRF.

2.1.1 Algae Summary

Hafele (2013) quantified attached algae (periphyton) by cell density per square centimeter (cells/cm²) and biovolume by cubic micrometer (um³/cm²), and each taxon was processed to species. While there was a total of three algae samples with corresponding replicates, only three samples and one replicate were processed. No statistical analysis was performed between sites. However, the results of both the density and biovolume depicted dramatically higher algae measurements downstream of the RWRF. Cell density appeared to be approximately seven to 14 times (3,000,000 to 6,900,000 cells/cm²) greater at Lower Site 2 and Lower Site 1 relative to the Upper Site. Similarly, algae biovolume appeared to be approximately 10 to 14 times (1,800,000,000 to 2,600,000,000 um³/cm²) greater at Lower Site 2 and Lower Site 1 relative to the Upper Site. Moreover, Hafele (2013) reported the identified algae species associated with low nutrient level concentrations (e.g., *Oscillatoria limnetica*) decreased from approximately 38 percent of biovolume upstream of RWRF to less than five percent at the downstream sites. Further illustrating a change in algal community assemblages, taxa associated with nutrient rich environments (e.g. *Nitzchia* spp.) increased from approximately 12 percent biovolume upstream to 25–38 percent downstream of the RWRF.

2.1.2 BMI Summary

BMI samples were identified and assessed by Hafele (2013) for common metrics used to assess impairment (Section 1.6.1), including total abundance, EPT (Ephemeroptera, Plecoptera, and Trichoptera) abundance, total taxa richness, EPT taxa richness, percent sensitive EPT taxa,

percent intolerant taxa, percent Oligochaeta, and percent non-insect taxa. Instead of using a standard biotic index score system, the Hafele (2013) study applied the Tukey Comparison of Means to test the significance level of differences between the upstream and downstream sites. Similar to the algal community results, the BMI metrics used here showed a conspicuous difference between upstream and downstream condition (Table 2-2). Furthermore, all metrics were statistically significant between the upstream and downstream sites.

Metrics	US1	US1*	LS1	LS1*	LS2	LS2*
Total Abundance	21,550	22,153	4,852	4,440	9,297	5,289
EPT Abundance	7,871	9,080	242	294	1,743	1,141
Total Taxa Richness	46	42	32	32	37	38
EPT Taxa Richness	23	21	9	7	14	14
% Sensitive EPT Taxa	26	31.7	4.4	6.2	15.6	18.3
% Intolerant Taxa	29.6	35.3	3.3	5.5	16.5	18.5
% Oligochaeta	5.4	8.2	24.3	26.1	12.3	12.2
% Non-Insect Taxa	11.6	16.4	56.3	60.2	29	28.1

Table 2-2. Summary Table of Hafele (2013) Invertebrate Results

* replicate

2.2 Summary of Brown and Caldwell Results

As with Hafele (2013), Brown and Caldwell (2014) also used comparisons of algal and BMI community metrics near the facility, as well as assessing changes in analytical water chemistry in the Rogue River downstream of the RWRF outfall.

2.2.1 Water Quality Summary

Brown and Caldwell (2014) collected in situ water quality data and surface water grab samples for laboratory analysis of trace metals, nutrients (phosphorus [P] and nitrogen [N] in various chemical forms), as well as other compounds monitored as part of the City's NPDES permit requirements. Water samples were collected at four transects (three samples per transect) upstream of the RWRF outfall; at or near the zone of initial dilution (ZID) boundary, approximately 100 feet downstream of the regulatory mixing zone (RMZ) boundary (labeled and hereafter referred to as the RMZ samples); and downstream where the effluent was near fully mixed with the river. Samples were taken during dye injection to determine sample location within/outside of the most concentrated portions of the effluent plume. The dye does not contain N or P that would skew the results. The upstream samples and most downstream samples were collected at each bank and midstream. The samples in the ZID and RMZ were collected in the apparent lateral center of the effluent plume, at the margin of the plume and at the far bank.

As part of the Brown and Caldwell (2014) study, multiparameter probes were deployed to measure in situ water quality (water temperature, dissolved oxygen, pH, turbidity, and conductivity) over portions of a 4-day period beginning mid-day on October 14 and ending mid-day on October 17, 2013. The probes were deployed at three riffle locations; Riffle 2 (upstream of the outfall) and Riffles 3 and 4 (downstream of the outfall), corresponding to the upstream and two downstream riffles sampled by Hafele (2013) (See Table 2-1). Ranges in in situ water quality parameters are shown in Table 2-3. Probes located at the Riffle 3 and 4 sites were moved from the north bank to the south bank on October 16 after the dye study indicated that the effluent plume did not influence water quality conditions across the channel to the north bank.

Parameter	Riffle 2	Riffle 3	Riffle 4
Water Temperature (°C)	6.1 – 9.3	7.0 - 10.2	6.4 - 9.5
DO (mg/L)	12.9 – 15.0	9.2 - 12.6	11.9 – 14.1*
DO (% saturation)	109.1 - 127.0	80.4 - 109.0	99.7 - 120.2
рН	7.5 - 8.5	7.2 – 7.9	7.51 - 8.4*

Table 2-3. Brown and Caldwell (2014) Summary of Continuous Probe Results

*Estimated from report graphics; data not available in Appendix H (Brown and Caldwell 2014)

Results of laboratory nutrient analyses as well as comparisons with independent sampling data collected by DEQ at other Rogue River locations are included in Table 2-4. Also included are 2013 results for samples taken in the Rogue River at Dodge Park (approximately 7.9 RMs) upstream of the outfall) and north of Gold Hill, (approximately 9.75 RMs downstream of the outfall) (data were obtained from the Oregon Department of Environmental Quality [DEQ]), and Bear Creek, whose confluence with the Rogue River is approximately 3.6 RMs downstream of the outfall. All nutrients appeared to be elevated within the plume at the ZID and slightly elevated just downstream of the RMZ. However, these effects did not extend across the channel, but were observed only in the samples taken in the center of the effluent plume. There were detectable increases in nutrients where the effluent was near fully mixed with the river flow for nitrate and to a lesser extent, total N. Recognizing that typical background levels of nutrients are influenced by "ecoregional" differences in climate, geography, and geology as well as anthropogenic influences (USEPA 2000), DEO water quality guidance indicating poor water quality occurs at nutrient levels > 0.08 mg-P/L total P and > 0.49 mg-N/L as nitrate + nitrite (Hicks, 2005). The three nitrate + nitrite results at the near complete mix conditions were below the DEQ cutoff for poor water quality. All values of nitrate at the near fully mixed sampling transect were higher than at the upstream site. At the near fully mixed location, orthophosphate was below detectable limits.

Site	Sample Site/Mo.	Total P (mg-P/L)	Orthophosphate (mg-P/L)	Total Kjeldahl N (mg-N/L)	Ammonia-N (mg-N/L)	Nitrate (mg-N/L)	Nitrite (mg-N/L)	Total N (mg-N/L)				
Brown and Caldwell Mixing Zone Study Sampling												
D:07 0	Left bank	< 0.07	< 0.07	< 0.30	< 0.07	0.12	< 0.05	0.12				
Riffle 2 (Unstream)	Center	< 0.07	< 0.07	0.3	< 0.07	0.1	< 0.05	0.4				
(Opsireum)	Right bank	< 0.07	< 0.08	< 0.30	< 0.07	0.18	< 0.05	0.18				
	Center plume	0.31	0.32	1	0.52	1.12	0.1	2.22				
RWRF outfall (ZID)	Fringe	< 0.07	< 0.07	< 0.30	< 0.07	0.1	< 0.05	0.1				
	Out of plume	< 0.07	< 0.07	0.3	< 0.07	0.14	< 0.05	0.44				
200 (, 1 ,	Center plume	0.22	0.18	0.7	0.18	0.65	0.06	1.41				
500 feet aownstream	Fringe	< 0.07	< 0.07	< 0.30	< 0.07	0.14	< 0.05	0.14				
oj KwKP ouijuli (KMZ)	Out of plume	< 0.07	< 0.07	0.3	< 0.07	0.09	< 0.05	0.39				
D	Left bank	< 0.07	< 0.07	< 0.30	< 0.07	0.41	< 0.05	0.41				
Downstream of Riffle 5 (Full mir)	Center	< 0.07	< 0.07	0.3	< 0.07	0.29	< 0.05	0.59				
	Right bank	0.08	< 0.07	< 0.30	< 0.07	0.45	< 0.05	0.45				
			Oregon DEQ M	onthly Sampling								
	January	0.04	0.036		< 0.01	0.02	207*					
Dodgo Bark	March	0.04	0.0255	Not analyzed	0.012	0.00)59*	Not analyzed				
Douge Furk	May	0.03	0.0255	Not analyzed	0.01	< 0.0	005*	Not analyzed				
	July	0.04	0.0265		< 0.01	0.00)74*					
	January	0.07	0.051		0.122	0.2	49*					
nonth of Cold Hill	March	0.07	0.042	Not analyzad	0.077	0.1	30*	Not analyzed				
ποτιπ οј θοια Ηια	May	0.08	0.057	Not analyzed	0.136	0.1	08*	Not analyzed				
	July	0.09	0.064		0.098	0.1	96*					
	January	0.07	0.045		0.12	1.7	/1*					
Den Guerr	March	0.06	0.029	Not on almost	0.12	0.6	56*	Net england				
Deur Creek	Мау	0.13	0.06	not analyzed	0.19	0.7	38*	not analyzed				
	July	0.11	0.063		0.035	0.7	36*					

Table 2-4. Brown and Caldwell (2014) Nutrient Sampling Results

*All DEQ Nitrate and Nitrite data reported as combined results

2.2.2 Algae Summary

Algal periphyton were also quantified by cell density per square centimeter and biovolume by cubic micrometer; each taxon was also processed to species. While there was a total of five algae samples with corresponding replicates, only five samples and one replicate were processed. No statistical analysis was performed between sites. Cell density appears to be greater downstream of the RWRF; whereas, biovolume was not. Comparing the same sites as Hafele (2013), cell density was between two and three times greater downstream of the RWRF compared to site R1 upstream. Algae biovolume was one to three times higher upstream of the RWRF (see Figure 2-3).

Figure 2-3. Brown and Caldwell Algae Density and Biovolume

Brown and Caldwell (2014) also performed an indicator species analysis on the periphyton assemblages to gauge the degree of nutrient and organic enrichment using species classifications, preferences, and tolerances published in Porter (2008). The assemblages examined included N fixers, taxa indicative of eutrophic (nutrient enriched) systems, taxa indicative of oligotrophic (nutrient poor) systems, tolerance to nutrient and organic enrichment (Bahls, 1993), and taxa indicative of N and P rich (eutrophic) and poor (oligotrophic) conditions. In general, density of eutrophic indicator taxa was higher downstream of the outfall, but biovolume was higher at the most upstream site. Oligotrophic taxa were found at higher densities downstream of the outfall and have higher biovolume at all downstream sites than the most upstream site. This may seem contradictory; however, the increase of oligotrophic algae downstream of the RWRF may simply be a result of greater algae abundance in the downstream region. Overall, algal data suggest that the composition of algae downstream of the outfall. However, this enrichment does not appear to inhibit the growth of algae associated with low nutrient (oligotrophic) conditions.

2.2.3 BMI Summary

BMI samples were assessed for total abundance, EPT abundance, total taxa richness, EPT taxa richness, percent intolerant taxa, percent Oligochaeta, percent non-insect taxa, percent shredders, percent clingers, and percent dominant taxon to compare results with those of the Hafele (2013) study (see Table 2-5). Additional metrics were calculated and used to calculate scores based on the Index of Biotic Integrity (IBI) described in the Oregon Plan for Salmon and Watersheds (WQIW, 1999); final scores can be seen in Table 2-5 and calculations are available in the full Brown and Caldwell (2014) study. The Tukey's Comparison of Means test was also performed between sites and was adjusted with differences among samples and replicates.

All BMI metrics, except for dominant taxon shifted towards levels indicating general disturbance and nutrient enrichment at riffles downstream of the RWRF. The shift began at Riffle 3 for total abundance, EPT abundance, EPT taxa richness, percent intolerant taxa, percent Oligochaeta, percent shredders, percent clingers. Depressed total taxa richness and increased percent noninsect taxa were observed at Riffle 4. Most metrics showed levels similar to conditions upstream of the RWRF by Riffle 5, except for EPT taxa richness, percent intolerant taxa, and percent Oligochaeta. BMI metrics associated with high IBI scores decreased downstream of Riffle 2 and increased in Riffle 5. Similarly, invertebrate metrics associated with lower IBI scores increased starting in Riffle 2 and decreased in Riffle 5. Moreover, IBI scores decreased in Riffles 3 and 4, and increased in Riffle 5. Overall, the changes in metrics associated with nutrient and organic enrichment in the riffle habitats downstream of the RWRF outfall (Riffles 3–5) suggest that the RWRF facility may be causing or contributing to trophic level interactions which are resulting in changes of invertebrate community assemblages to those associated with less favorable conditions.

Metrics	Riffle 1	Riffle 1 (Dup)	Riffle 2	Riffle 2 (Dup)	Riffle 3	Riffle 3 (Dup)	Riffle 4	Riffle 4 (Dup)	Riffle 5	Riffle 5 (Dup)	
Total Abundance	12,598	6,900	5,448	8,940	2,812	3,746	11,310	8,139	14,051	5,767	
EPT Abundance	5,978	3,000	2,336	3,615	1,280	1,665	915	1,264	5,026	1,614	
Total Taxa Richness	47	45	45	41	40	42	34	33	10	42	
EPT Taxa Richness	21	19	21	21	15	15	9	9	14	14	
% Intolerant Taxa	2.0	4.5	5.2	7.2	2	1	0.1	0	0.3	0.2	
% Oligochaeta	4.4	5.6	6.5	8.4	0.2	0.7	22.5	6.0	3.6	1.3	
% Non- Insect Taxa	11.0	11.6	17.0	19.3	5	5.7	38.9	26.7	11.9	31.9	
% shredders	13.8	25.7	10.8	13.9	8.3	7.5	6.2	9.5	13.5	10.1	
% clingers	69.2	58.3	59.9	58.0	47.5	47.1	40.0	48.4	53.2	56.4	
% Dominant taxon	12.8	17.0	10.3	10.7	17.5	15.8	16.4	10.4	12.8	20.5	
IBI Scores from Oregon Plan for Salmon and Watersheds (WQIW 1999)*											
Total Score	38	38	38	36	34	34	26	24	36	28	
Degree of impairment	Slight	Slight	Slight	Slight	Slight	Slight	Moderate	Moderate	Slight	Moderate	

Table 2-5. Summary Table of Brown and Caldwell (2014) Invertebrate Results

* Score calculations are available in Brown and Caldwell (2014)

2.3 Summary of ODEQ (2014) Qualitative Reconnaissance Results

The qualitative study conducted by the ODEQ (2014) covered approximately 31 miles of mainstem Rogue River, taking notes on areas of concerns at approximately nine reaches and seven tributary mouths. At all reaches and tributary sites, basic water parameters (i.e., water temperature, barometric pressure, dissolved oxygen, pH, and conductivity) were obtained. At all nine reaches, algae samples were taken for later taxonomic identification; invertebrate "density", "diversity", and "dominant taxa" were generalized and visually estimated onsite. There were two groups of observers. One group covered the upper 18 miles and eight sites. The other group covered lower 13 miles and other 8 sites. The three sites sampled by both Hafele (2013) and Brown and Caldwell (2014), were visually inspected by the group covering the lower 13 miles. Protocols for taxonomic ID or abundance estimation were not provided in the report.

2.3.1 Water Quality Summary

In situ water quality parameters were generally higher at site Lower 3 downstream of the RWRF outfall than results from adjacent sites. While temperatures were higher downstream of the outfall (Lower 3) compared to the next upstream (Lower 2) site by 1.9 °C, time-of-day effects may explain some of this increase and there was a similar increase from Lower 1 to Lower 2 of 1.2 °C. However, it should be noted the temperature was lower at Lower 4 by 0.9 °C than at Lower 3. Similarly, the difference in pH 0.7 units higher at Lower 2 than Lower 1, 0.1 units higher at Lower 2 that at Lower 3, and 0.2 units lower at Lower 4 than at Lower 3. Akin to pH and water temperature, DO was 0.6 mg/L higher at Lower 3. Conductivity had notable difference in conductivity upstream of the RWRF, Lower 3 was 51 uS/cm higher than Lower 2 and conductivity was 23 uS/cm lower at Lower 4 than Lower 3. Overall, while water temperature, pH, and DO were higher at Lower 3 that at Lower 2 and Lower 4, it appears these differences are at least partially attributed to natural diurnal fluctuation. It should be noted that the differences and time of day references between the text and the tables provided in ODEQ (2014).

2.3.2 Algae Summary

Out of the nine reaches sampled for algal periphyton there were four areas with algal substrate coverage of 40 percent or more in the Rogue River: at the hatchery (90%), downstream of Trail Creek (75%), 0.3 miles downstream of the RWRF (90%), and 1 mile downstream of the RWRF (40–50%). Two of these were in the upper 18 miles and the other two were in the lower 13 miles. There was only one major apparent shift in composition of dominant algae taxa, stalked diatoms were not dominant in either of the reaches below the RWRF. Visually speaking, only two sites showed signs of nuisance algal growth and reduced macroinvertebrate conditions. The site below the Cole M. Rivers fish hatchery (Upper 1) and the site 0.3 miles below the Medford RWRF (Lower 3) both showed high algal growth and signs of reduced macroinvertebrate assemblage quality. Dominant algae taxa at seven sites upstream of the RWRF and the two nearest downstream sites are provided in Table 2-6.

Site	Locations	Dominant Taxa	
Upper 1		Cladophora spp.	
	At Hatchery	Melosira spp.	
		<i>Cymbella</i> spp.	
Upper 2	Downstream of spillway	Melosira spp.	
		Cladophora spp.	
Upper 3	Downstream of Elk Island	Mougeotia spp.	
		<i>Epithemia</i> spp.	
Upper 4	Downstream of Trail Creek	Melosira spp.	
Upper 5	At Countryview Mobile Home Estate outfall	Melosira spp.	
Lower 1	Upstream of Hog Creek	Oscillatoria spp.	
Lower 2	0.2 miles unstream of DWDE	Melosira spp.	
	0.5 miles upsitean of KWKI	Oscillatoria spp.	
Lower 3	0.2 miles downstream of DWDE	Cladophora spp.	
		Melosira spp.	
Lower 4	1.0 miles downstream of DWDE	Cladophora spp.	
	1.0 miles downsuleani of KWKF	Oedogonium spp.	

 Table 2-6. Dominant Algal Taxa from ODEQ (2014) Rock Scrapes

2.3.3 BMI Summary

Based upon visual assessments by ODEQ (2014), most reaches surveyed along the Rogue River had moderate to high "density" and "diversity" of BMI; all reaches had at least one dominant taxa with in the EPT orders. Although there were no clear trends in invertebrate presence/absence along the surveyed reaches, the most noteworthy observation was the diversity level 0.3 mile downstream of the RWRF outfall (Lower 3) was low, which was unlike any other site.

3 OCTOBER 2018 SAMPLING METHODS AND RESULTS

3.1 Sampling Design

In order to provide comparability to previous studies as well as allowing statistical pooling of data across multiple surveys, the three riffles investigated during the Hafele (2013) study were sampled, along with four of the five riffles investigated by Brown and Caldwell (2014) (Table 3-1). In addition, samples were collected at riffles farther upstream and downstream than previously investigated (Table 3-1, Figure 3-1).

Site	Latitude (WGS84)	Longitude (WGS84)	Previous Study Site No.			Location Relative to RWRF Outfall	
			Hafele (2013)	Brown & Caldwell (2014)	ODEQ (2014)	Reach	RM
1	42.451672	-122.88003				Upstream	1.8
2	42.443384	-122.885543		Riffle 1			1.1
3	42.438851	-122.897916	US1	Riffle 2	Lower 2		0.4
4	42.438716	-122.913395	LS1	Riffle 3	Lower 3		0.4
5	42.440351	-122.921109	LS2	Riffle 4	Lower 4	Downstroom	0.9
6	42.440134	-122.932468		Riffle 5		Downstream	1.5
7	42.430937	-122.973356					4.1

 Table 3-1. October 2018 sampling locations

1. Sampling of "full mixing zone" about 0.2 RM upstream of Riffle 5

Site 1 was adjacent to Modoc Pond, approximately 1.8 RM upstream of the RWRF outfall, and 1 RM downstream of Ash Creek. Canopy cover was less than 10 percent and confined to the river margin. Average water depth across the stream varied with average water depths less than three feet, however the deepest areas were between three to four feet.

Site 2 was adjacent to the eastern end of the TouVelle State Recreation Site, approximately 1.1 RM upstream of the RWRF outfall and 0.4 RM downstream of Little Butte Creek. Canopy cover was less than 10 percent and confined to the river margin. Average water depth across the stream varied with average water depths less than three feet, however the deepest areas were between three to four feet.

Site 3 was adjacent to pasture and agricultural fields, approximately 0.4 RM upstream of the RWRF outfall and 1.1 RM downstream of Little Butte Creek. Smaller tributaries channels also located upstream of Site 3 include the Modoc Pond drainage channel (0.6 RM), an unnamed drainage ditch which originates from Ken Denmark Wildlife Area and the Jackson County Fire District No. 3 (0.5 RM), and another unnamed drainage channel with multiple origin points (0.3 RM). Canopy cover was less than 10 percent and confined to the river margin. Average water depth across the stream varied with average water depths less than three feet, however the deepest areas were between three to four feet.

Site 4 was adjacent to pasture and agricultural fields, approximately 0.4 RM downstream of the RWRF outfall. Canopy cover was less than 10 percent and confined to the river margin. Average water depth across the stream varied with average water depths less than three feet, however the deepest areas were between three to four feet.

Site 5 was adjacent to pasture and agricultural fields, and approximately 0.9 RM downstream of the RWRF outfall. Canopy cover was less than 10 percent and confined to the river margin. Average water depth across the stream varied with average water depths less than three feet, however the deepest areas were between three to four feet.

Site 6 was adjacent to pasture and agricultural fields, and approximately 1.5 RM downstream of the RWRF outfall. Canopy cover was less than 10 percent and confined to the river margin. Average water depth across the stream varied with average water depths less than three feet, however the deepest areas were between three to four feet.

Site 7 was adjacent to pasture fields and forested land, and approximately 4.12 RM downstream of the RWRF outfall. Nearby tributaries upstream of Site 7 include Bear Creek (0.2 RM) and Upton Slough (0.8 RM). Additional tributaries downstream of Site 6 and more than 1 RM upstream of Site 7 include Snider Creek, Whetstone Creek, and multiple unnamed drainage ditches. Canopy cover was less than 10 percent and the average water depth across the stream varied with average water depths less than three feet, however the deepest areas were between three to four feet.

Figure 3-1. Medford RWRF vicinity map for October 2018 sampling event

3.2 Quality Assurance

The objective of data collection for this sampling plan was to produce data that represent, as closely as possible, in situ conditions of the Rogue River in the vicinity of the Medford RWRF with respect to water chemistry affecting algae and BMI assemblages. Sampling and laboratory quality assurance/quality control (QA/QC) and data reporting were performed in accordance with ODEQ requirements for minimum data acceptance (Data Quality Level A). Quality assurance guidelines include adherence to standard sampling and handling methods, and sampling control through standard chain of custody forms maintained at each laboratory. All collected samples were described by field notes, labeled with the Project name, site identification, sample type, date and time sampled, preservatives used, constituent analyses required, and the sampler's name. For laboratory analyses of collected water samples, precision was measured through a duplicate and a blank sample. Laboratory precision was evaluated against quantitative relative percent difference (RPD) performance criteria.

3.3 Water Quality

3.3.1 Methods

Seven sites were selected, including three locations upstream of the RWRF outfall, as well as four locations downstream of the outfall (see Table 3-1 and Figure 3-1 for site locations). Sites sampled during this study were selected for comparison to previous studies, proximity to the RWRF outfall, and river accessibility. Basic water quality and nutrient samples were collected at each site (see Table 3-2 for parameters). To provide comparability with existing data, sample collection and analysis generally conform with ODEQ (2009) standard operation procedures for sampling of surface water quality, with minor modifications described below.

Using a modification of the bucket grab method in ODEQ (2009), surface water grab samples were collected using a 1 Liter HDPE bottle at four (4) equally spaced locations along a transect located at the upstream end of the riffles selected for BMI and periphyton sampling. A bottle rinsed with in situ water was filled in the stream at each sampling location. Contents were then transferred to another food-grade container rinsed with in-situ water quality measurement and collection of analytical water quality samples. Temperature, dissolved oxygen (DO), conductivity, and pH were collected using a pre-calibrated multi-probe (YSI Pro Plus), while turbidity was measured using grab samples and a portable turbidimeter (Hach 2100Q). Following recording of in situ measurements, composited water samples were placed in laboratory supplied sample containers. The samples were preserved, stored on ice, and delivered to Neilson Research Corporation in Medford for analysis. Samples were analyzed within EPA specified holding times and were accomplished with appropriate quality control measures. Constituents used for analysis and reporting limits are included on Table 3-2.

Parameter/Constituent	Method	Resolution/ Method Reporting Limit			
In Situ Water Quality					
Temperature	EPA 170.1	+ 0.15 °C			
Dissolved oxygen	SM 4500-O	+ 0.2 mg/L or 2% of reading (0-20 mg/L)			
pH	SM 4500-H	0.0625 s.u.			
Specific conductance	SM 2510A	+ 0.5% of reading (0 -100 uS/cm)			
Turbidity	SM 2130 B	0.01 NTU or $\pm 2\%$ of reading (0–1000			
		NTU)			
Analytical Chemistry					
Total Phosphorus	SM4500PE	0.025 mg P/L			
Orthophosphate	SM4500PE	0.025 mg P/L			
Total Kjeldahl Nitrogen	EPA 351.2 Cu	0.0625 mg N/L			
Ammonia	EPA 350.1	0.15 mg N/L			
Nitrate	EPA 353.2	0.05 mg N/L			
Nitrite	EPA 353.2	0.01 mg N/L			

Table 3-2: In situ and analytical water quality methods

3.3.2 Results

Based upon four spot measurements taken at each sampling sites, Table 3-3 shows average in-situ water quality (i.e., water temperature, dissolved oxygen, conductivity, pH, and turbidity) during sampling. Water temperature ranged from 10.2–10.6°C with an average of 10.4°C for samples collected during morning hours in the reach upstream of the RWRF, whereas samples collected later in the day ranged from 11.3–13.1°C with an average of 12.3°C in the reach downstream of the RWRF. Although these results were only representative of the time of sampling, results at different locations were within the range of diel variability at three locations documented in continuous monitoring by Brown and Caldwell (2014).

Dissolved oxygen (DO) ranged from 10.8–11.6 mg/L with an average of 11.3 mg/L for samples collected during morning hours in the reach upstream of the RWRF, whereas samples collected later in the day ranged from 11.5–12.4 mg/L with an average of 12.1 mg/L in the reach downstream of the RWRF. Corresponding DO saturation ranged from 102–109 percent with an average of 106 percent in the reach upstream of the RWRF and 110–123 percent with an average of 118 percent in the reach downstream of the RWRF. pH ranged from 7.6–8.1 with an average of 7.9 for samples collected during morning hours in the reach upstream of the RWRF, whereas samples collected later in the day ranged from 8.1–8.8 with an average of 8.5 at the four sites in the reach downstream of the RWRF. These results are consistent with photosynthetic DO production by periphyton during daylight hours at locations both upstream and downstream of the RWRF.

Conductivity ranged from 53–66 uS/cm with an average of 58 uS/cm in the reach upstream of the RWRF and 66–83 uS/cm with an average of 72 uS/cm in the reach downstream of the RWRF. Turbidity ranged from 1.9–2.6 NTU with an average of 2.4 NTU in Upstream Reach, and 3.7–5.3 NTU with an average of 4.2 NTU in the reach downstream of the RWRF.
Site	Date	Time	H ₂ O Temp (°C)	DO (mg/L)	DO (%)	рН	Cond. (uS/cm)	Turbidity (NTU)	Median Substrate (mm)	Substrate Algae Cover	Macrophyte Cover
1	4-Oct	10:46	10.2	11.5	108	8.0	53.3	1.9	65	10%	20%
2	3-Oct	9:00	10.3	10.8	102	7.6	65.9	2.5	90	60-90%	20%
3	4-Oct	11:00	10.6	11.6	109	8.1	55.6	2.6	90	10%	20%
4	4-Oct	11:41	11.3	11.7	111	8.1	66.1	3.7	60	100%	5-30%
4 (Dup.)	4-Oct	11:51	11.5	11.5	110	8.2	69.8	5.3	60	100%	5-30%
5	4-Oct	15:13	12.8	12.4	122	8.7	67.2	4.4	110	-	80%
6	4-Oct	15:58	13.0	12.4	122	8.8	71.5	4.1	95	90%	20-30%
7	4-Oct	15:36	13.1	12.4	123	8.7	83.2	3.7	70	0%	<5%

Table 3-3. In situ water quality, substrate, and cover estimates at October 2018 study sites

Qualitative data included median substrate size, algae cover (i.e., substrate algae cover and macrophyte cover), which are shown in Table 3-3. Median substrate size was visually estimated, and a median size rock was selected and measured along the a-axis and b-axis. The b-axis was displayed in Table 3-3. The median substrate size ranged from 65–90 mm in the reach upstream of the RWRF and 60-110 in the Reach downstream of the RWRF. Visually estimated substrate algae cover ranged from 10–90 percent in the reach upstream of the RWRF and 0–100 percent in the Reach downstream of the RWRF and 0–100 percent in the Reach downstream of the RWRF and 0–100 percent in the reach upstream of the RWRF. Visually estimated macrophyte cover was consistently 20 percent in the reach upstream of the RWRF and ranged from <5–80 percent in the downstream reach. As found in previous studies, white bubble-like foam was observed at Site 4 only, with odor typically associated with wastewater treatment (e.g., volatile fatty acids such as butyric, propanoic, and valeric acids) initially detectable at Site 4 but no longer detectable downstream of Site 5.

Laboratory reports for analytical water chemistry are included in Appendix C. Nutrient results for total phosphorus (Total P), orthophosphate, total Kjeldahl nitrogen (TKN), ammonia as nitrogen (Ammonia-N), nitrate, and nitrite are displayed in Table 3-4. Total P ranged from 0.062-0.082 mg/L with an average of 0.073 mg/L in the reach upstream of the RWRF and 0.087-0.254mg/L with an average of 0.14 mg/L in the reach downstream of the RWRF. Orthophosphate ranged from 0.027–0.037 mg/L with an average of 0.31 mg/L in the reach upstream of the RWRF and 0.060–0.102 mg/L with an average of 0.08 mg/L in the reach downstream of the RWRF. Total Kjeldahl nitrogen ranged from 0.24-0.34 mg/L with an average of 0.29 mg/L in the upstream of the RWRF, and 0.41–0.70 mg/L with an average of 0.49 mg/L in the reach downstream of the RWRF. Ammonia-N ranged from 0.110-0.155 mg/L with an average of 0.13 mg/L in the reach upstream of the RWRF and 0.060–0.102 mg/L with an average of 0.085 mg/L in the reach downstream of the RWRF. Nitrate concentrations in the reach upstream of the RWRF were less than 0.05 mg/L and as such were not detectable by laboratory instruments. Nitrate-N concentrations ranged from and 0.076–0.280 mg/L with an average of 0.21 mg/L in the reach downstream of the RWRF. Nitrite-N concentrations ranged from and 0.015–0.043 mg/L in the reach downstream of the RWRF and were less than 0.01 mg/L in the reach upstream of the RWRF.

S:::::::::	ТР	Orthophosphat e	TKN	Ammonia- N	Nitrate	Nitrite	TIN:PO 4 (mg-N/
Site	(mg- P/L)	(mg-P/L)	(mg- N/L)	(mg-N/L)	(mg- N/L)	(mg- N/L)	mg-P)
1	0.074	0.027	0.34	0.155	< 0.05	< 0.01	8.0
2	0.082	0.037	0.24	0.110	< 0.05	< 0.01	4.6
3	0.062	0.028	0.30	0.140	< 0.05	< 0.01	7.1
4	0.131	0.090	0.46	0.231	0.249	0.043	5.8
4 (Dup.)	0.254	0.102	0.70	0.205	0.244	0.035	4.7
5	0.087	0.060	0.42	0.184	0.076	0.015	4.6
6	0.114	0.085	0.44	0.313	0.180	0.032	6.2
7	0.122	0.087	0.41	0.217	0.280	0.032	6.1

Table 3-4: Analytical results for nutrients at October 2018 study sites

While the results above suggest total phosphorus levels were above DEQ guidelines (> 0.08 mg/L total P) (Hicks 2005), total phosphorus generally decreased with distance downstream of the RWRF outfall. In addition to various guidelines regarding nutrient thresholds, the ratio of

nutrients can be used to indicate the nutrient balance in aquatic ecosystems and assist in indicating an over- or under-abundance (i.e., nutrient limitation) of one nutrient or another (Carpenter 2003). The ratio of total inorganic nitrogen (TIN)⁴ to phosphate at a balanced state was often considered to be a 16:1 (molar) ratio for dissolved inorganic nitrogen and phosphorus (N:P) (Redfield 1958). The molar N:P ratio of 16:1 corresponds to a mass ratio of approximately 7.2:1 and indicates a balance of algal nutrients in aquatic ecosystems on a theoretical basis. Nitrogen limitation is strongly indicated at nitrogen to phosphorus TIN:PO4 mass ratios below 4.5:1 (10:1 molar ratio) and phosphorus limitation at mass ratios above 9.1 (20:1 molar ratio), respectively. Overall, the October 2018 results suggest relatively balanced nutrient conditions at two sites upstream of the RWRF, and nitrogen limitation at Site 2 at the eastern end of TouVelle State Recreation Site as well as all sites downstream of the RWRF.

3.4 Benthic Macroinvertebrates

3.4.1 Methods

Seven sites were selected, including three locations upstream of the RWRF outfall, as well as four locations downstream of the outfall (Table 3-1 and Figure 3-1). Sites sampled during this study were selected based on previous studies, proximity to the RWRF outfall, as well as river accessibility. A replicated BMI sample was collected in each riffle and then sent to a laboratory for identification and enumeration, allowing for comparisons of within-site variability. To provide comparability with existing data, sample collection and analysis generally followed sampling and quality control procedures from previous studies for BMI with the substitution of Surber sampling in lieu of Kick-net methods.

BMI sampling followed DEQ guidelines for a Level 3 BMI Survey (ODEQ 2009). Two composite samples, each consisting of eight randomly selected sub-samples, were collected from each of the seven selected riffle sample locations. One square foot of substrate was sampled at each of the eight sub-sample locations using a Surber sampler with a 0.500-millimeter mesh netting. The sampler was placed on the substrate and, working from the upstream edge of the sampling plot backward, larger stones were scrubbed with gloved hands and a stiff brush directly in front of the net to remove attached animals. Each stone was inspected for additional attached organisms before being set aside. If a rock was lodged in the stream bottom, it was rubbed a few times concentrating on any cracks or indentations. After removing all large stones, small substrates (i.e., sand or gravel) were disturbed to a depth of about 10 cm by raking and stirring with the hands. The process continued until no additional animals or organic matter washed into the net. After completing the collection, the net contents were transferred into a clean jar with a squirt bottler. The net was rinsed until it was free of debris and BMI. The composite samples were labeled, preserved in ethanol, and sent to Aquatic Biological Associates in Corvallis, Oregon for later identification and enumeration.

3.4.2 Results

As discussed in Section 1.4.1, there are multiple ways to describe BMI communities. The metrics selected for calculation include those used by Hafele (2013), Brown and Caldwell (2014), plus additional ones identified by the EPA's rapid bioassessment of wadeable streams (Barbour et al. 1999) for greater completeness in identifying environmental perturbation. Table 3-5 summarizes results for metrics discussed above and in Section 1.4.1.

⁴ Sum of inorganic nitrogen concentrations from NH₃, NO₃, and NO₂, expressed as mg-N/L

Site	Total taxa richness	Total abundance	EPT taxa richness	EPT abundance	% Total tolerant individuals	% Total sensitive individuals	% Total non-insect individuals	% Total dominant taxon
1	45	10,539	21	4,324	31.8	3.3	14.8	35.8
1(Dup.)	43	20,447	21	10,080	23.2	2.3	15.6	37.0
2	50	30,941	24	12,416	21.9	7.7	23.1	37.0
2(Dup.)	59	41,577	26	11,714	24.5	18.6	16.9	41.5
3	57	12,295	22	2,750	30.0	20.4	27.9	47.1
3(Dup.)	48	13,993	18	3,314	31.1	11.3	33.3	40.4
4	47	11,927	11	3,023	19.7	0.4	19.0	41.4
4(Dup.)	47	12,861	13	3,577	16.6	0.2	20.8	37.8
5	33	18,162	5	284	40.9	0.0	82.9	66.4
5(Dup.)	33	26,796	6	538	53.6	0.0	84.5	56.0
6	45	7,944	15	1,077	22.9	0.0	43.6	46.4
6(Dup.)	42	11,529	11	1,660	39.8	0.0	54.2	39.8
7	44	10,738	13	4,541	17.3	0.0	29.9	55.2
7(Dup.)	41	15,151	13	5,408	20.1	0.0	32.3	49.5

Table 3-5: Summary of BMI results at October 2018 study sites

The Bray-Curtis Similarity was calculated across all sites and site replicates (see Appendix D, Table 1). Similarity within sites was low to moderate ranging from 66–83 percent, with a median of 72 percent. Similarity among sites ranged from 33–64 percent in the reach upstream of the RWRF sites and 24–60 percent in the reach downstream of the RWRF. Similarity values between sites in the reaches upstream and downstream of the RWRF were relatively low ranging from 15–51 percent, suggesting some change in the BMI community upstream and downstream of the RWRF outfall. The lowest similarity among reaches was between Site 1 and Site 5, and highest between Site 3 and Site 6.

Variation in total taxa richness and total abundance for each site are shown in Table 3-5 (also see Appendix D, Figure 1). Taxa richness ranged from 43–59 with an average of 50 in the reach upstream of the RWRF and 33–47 with an average of 42 in the reach downstream of the RWRF. Total abundance ranged from 10,500–41,600 with an average of 21,600 in the reach upstream of the RWRF and 7,900–26,800 with an average of 14,400 in the reach downstream of the RWRF. While both taxa richness and macroinvertebrate abundance show a lower average in the reach downstream of the RWRF, the individual sites appear to be within the overall range of the reach upstream of the RWRF (excluding total taxa richness at Site 5 and total abundance in one of the downstream Site samples). Lowest taxa richness was at Site 5. Taxa richness is higher at Site 6 and Site 7, which have similar values to site 4. The lowest abundance was at Site 6; however, the Site 6 replicate and both Site 7 values were with the range of values in the reach upstream of the RWRF.

While EPT abundance and EPT taxa richness also have lower values downstream of the RWRF outfall, decreases appear to begin upstream of the facility (see Table 3-5 and Appendix D, Figure 2). EPT taxa richness ranged from 24–36 with an average of 28 in the reach upstream of the RWRF and 16–24 with an average of 20 in the reach downstream of the RWRF. EPT abundance ranged from 7,200–12,400 with an average of 7,400 in the reach upstream of the RWRF and 300–5,500 with an average of 2,500 in the reach downstream of the RWRF. The EPT values in the reach downstream of the RWRF were notably lower than in the reach upstream. The lowest EPT abundance and richness values were recorded at site 5. EPT richness at Sites 4, 6, and 7 were all similarly low in comparison to Sites 1,2, and 3. EPT Abundance at Site 6 was also below the range found at the sites upstream of the RWRF.

There were lower percentages of sensitive BMI individuals at all sites in the reach downstream of the RWRF; however, there were only three samples with notably higher relative abundance of tolerant individuals in the reach downstream of the RWRF (see Table 3-5 and Appendix D, Figure 3). The percent of intolerant individuals ranged from 2.3–20.4 with an average of 11 in the reach upstream of the RWRF and 0–0.4 percent with an average of 0.1 in the reach downstream of the RWRF. The percent of tolerant individuals ranged from 21.9–31.8 with an average of 27 in the reach upstream of the RWRF and 16.6–53.6 with an average of 29 in the reach downstream of the RWRF. The results depict a decrease of intolerant individuals between Site 4 and Site 7 as well as a lower overall average than the reach upstream of the RWRF.

The percent dominant taxon and non-insect individuals in the reach downstream of the RWRF were notably higher than those in the upstream reach (see Table 3-5 and Appendix D, Figure 4). The percent of dominant taxon ranged from 35.8–47.1 with an average of 40 in the reach upstream of the RWRF and 37.8–66.4 with an average of 49 in the reach downstream of the RWRF. The percent of non-insect individuals ranged from 14.8–33.3 with an average of 22 in the reach upstream of the RWRF and 19.0–84.5 with an average of 46 in the reach downstream of the RWRF. As found for the percent of tolerant individuals, there was a notable increase in the

percent of dominant taxon and non-insect individuals at Site 5 relative to results at upstream sites. The relative abundance of dominant taxon is lower at Site 7 than Site 5, but still outside the range found at the sites in the reach upstream of the RWRF. While the percent of total non-insect individuals at Site 6 is lower than Site 5, it is still outside the range found at sites upstream of the RWRF. Interestingly, the percent of dominant taxon and non-insect individuals at Site 4 were both within the range found at sites upstream of the RWRF.

3.5 Periphyton

3.5.1 Methods

For comparability to previous studies, periphyton was collected using procedures described by USGS (Carpenter 2003). Seven sites were selected, including three locations upstream of the RWRF outfall, as well as four locations downstream of the outfall (Table 3-1 and Figure 3-1). Riffles sampled during this study were selected based on previous studies, proximity to the RWRF outfall, as well as river accessibility. Replicate periphyton samples were collected in each riffle, allowing for comparisons of within-site variability. Basic water quality and nutrient samples were collected at each site (see Table 3-2 for parameters).

Composite algae samples were comprised from attached algae from 16 randomly selected rocks at each of the seven selected riffle sample sites. Rocks selected were the nearest two rocks behind the rebar marker placed to delineate BMI sampling location. Rocks selected were large and flat enough to accommodate sampling a round ABS pipe fitting (scribe) with an outside diameter of 5.6 cm. The pipe was placed on each rock, and the algae located outside the scribe was removed with a plastic-bristle brush and/or scraped off with a knife and discarded. The circular patch of algae remaining on the rock was then scraped into a basin, and then transferred to a 125 ml sample jar. Algae samples were labeled, preserved in ethanol, and sent to Aquatic Analysts (Friday Harbor, Washington) for identification and enumeration (i.e., species density and biovolume).

3.5.2 Results

As discussed in Section 1.4, the metrics selected for calculation include those used by Hafele (2013) and Brown and Caldwell (2014) with additional metrics identified by EPA's rapid bioassessment of wadeable streams (Barbour et al. 1999). Figure 3-2 (cell density and biovolume) and Appendix E Table 3 (dominant taxon) summarize metrics also discussed in previous studies. The cell density and biovolume for all sites are shown in Table 3-2. Cell density ranged from 61,000 - 324,000 cells/cm² in the reach upstream of the RWRF and 67,000 - 2,088,000 cells/cm² in the reach downstream of the RWRF. Biovolume ranged from 20,168,000 - 201,041,000 um³/cm² in the reach upstream of the RWRF and 23,961,000 - 823,906,000 um³/cm² in the reach downstream of the RWRF and biovolume in the reach downstream of the RWRF. Cell density and biovolume in the reach downstream of the RWRF show notable increases relative to sites in the reach upstream of the RWRF from sites 4 through 6. Cell densities and biovolumes at Site 7 were comparable to Site 1.

Figure 3-2. Diatom Cell Density and Biovolume estimates at October 2018 study sites

In addition to differences in algal cover, density and biomass, algal community composition was examined at sites upstream and downstream of the RWRF. Using the Percent Community Similarity (PSc), community similarity within sites was low to moderate ranging from 69–81 percent, with a median and average of 74 percent (See Appendix E, Table 1). PSc ranged from 63–84 percent within the reach upstream of the RWRF and 39–74 percent within the reach downstream of the RWRF. Similarity among the sites upstream and downstream of the RWRF was relatively low to moderate, ranging from 50–74 percent. Across all sites, the greatest PSc was between Sites 3 and 6. The lowest similarity across all sites was between Site 2 and 5 replicates. These results suggest changes in composition between sites may not be readily attributed to the RWRF discharge.

Other measures of periphyton community composition were similar at sites upstream and downstream of the RWRF (Table 3-6). The percent dominant taxon ranged from 45.6–62.6 with an average of 58 in the reach upstream of the RWRF and 45.8–74.5 with an average of 56 in the reach downstream of the RWRF. Except for Site 4, the reach downstream of the RWRF had relatively lower percentages of dominant taxon than the reach upstream of the RWRF. Overall, taxon among the two reaches also seem to be similar (see Appendix E, Table 3). Species richness ranged from 18–29 with an average of 24 in the reach upstream of the RWRF and 19–29 with an average of 25 in the reach downstream of the RWRF. Shannon's diversity ranged from 1.96–2.71 with an average of 2.26 in the reach upstream of the RWRF and 1.8–2.72 with an average of 2.38

in the reach downstream of the RWRF. Overall, species richness and Shannon's diversity seem to be similar in the reach downstream of the RWRF than in the reach upstream of the RWRF (also see Appendix E, Figure 1).

Site	Species Richness	Shannon Diversity	Percent Sensitive	Percent Tolerant	PTI	Percent A. minutissima
1	18	2.2	49.4	0.0	2.5	12.9
1 (Dup.)	19	2.0	40.0	1.2	2.4	8.2
2	29	2.7	37.5	7.5	2.3	9.2
2 (Dup.)	25	2.3	46.3	4.1	2.4	23.1
3	24	2.2	37.1	5.7	2.3	6.7
3 (Dup.)	27	2.2	32.3	2.5	2.3	7.0
4	24	1.8	18.9	11.5	2.1	8.9
4 (Dup.)	25	2.1	21.6	23.0	2.0	5.4
5	28	2.7	47.2	4.8	2.4	1.6
5 (Dup.)	19	2.5	45.8	9.3	2.4	0.0
6	27	2.4	31.2	11.0	2.2	3.3
6 (Dup.)	23	2.4	35.2	8.5	2.3	4.2
7	23	2.6	50.5	11.9	2.4	6.4
7 (Dup.)	29	2.5	34.5	14.4	2.2	2.2

Table 3-6: Summary of EPA (Barbour et al. 1999) diatom biotic integrity metrics results at
October 2018 study sites

As expected, percent sensitive diatoms and tolerant diatoms generally exhibited an inverse pattern (Table 3-6). The percent sensitive diatoms ranged from 32.2–49.4 with an average of 40 in the reach upstream of the RWRF and 18.8–50.5 with an average of 36 in the reach downstream of the RWRF. The percent tolerant diatoms ranged from 0–7.5 with an average of 3.5 in the reach upstream of the RWRF and 4.8–23.0 with an average of 12 in the reach downstream of the RWRF. There was a notable depression in the percent of sensitive diatoms at Site 4, which returned to levels similar to Site 1 at Site 5. Tolerant taxa had opposite fluctuations at Sites 4 and 5. Overall, there was a notable increase in the percent of tolerant diatoms and more dynamic fluctuations in the percent of sensitive diatoms in the reach downstream of the RWRF (see Table 3-6 and Appendix E, Figure 2). Although the percent tolerant individuals (PTI) were similar at the reach scale upstream and downstream of the RWRF, the PTI was noticeably lower at Site 4 than any other site (see also Appendix E, Figure 3).

As anticipated, the percent of *A. minutissima* appeared to follow an inverse pattern to substrate size (see Table 3-3, Table 3-6, and Appendix E, Figure 4). The percent of *A. minutissima* ranged from 6.7–23.1 with an average of 11.2 in the reach upstream of the RWRF and 0–8.9 with an average of 4.0 in the in the reach downstream of the RWRF. Overall, the relative abundance of *A. minutissima* was considerably lower at Sites 5 through 7 than at Site 4 or the sites in the reach upstream of the RWRF. As described in Section 3.3, the median substrate size was larger at Sites 5 through 7 compared to both Site 4 and the reach upstream of the RWRF.

There were also no observable patterns in the percentage of other diatoms associated with trophic states, except for the percent of diatoms indifferent to trophic state, which followed patterns similar to that shown by *A. minutissima* (see Appendix E, Table 2). The percent of diatoms indifferent to trophic state ranged from 15.8–33.1 with an average of 19.9 in the reach upstream of the RWRF and 5.6–26.5 with an average of 13.7 in the in the reach downstream of the RWRF. Overall, the percent of diatoms indifferent to trophic state was notably lower in the reach downstream of the RWRF than in the reach upstream of the RWRF. The percent of diatoms considered N-fixers also had a similar trend to *A. minutissima* (see Appendix E, Table 2). The percent of N-fixing diatoms ranged from 0–3.3 with an average of 1.7 in the reach upstream of the RWRF. The percent of N-fixing diatoms was considerably lower in the reach downstream of the RWRF. The percent of the RWRF. The percent of N-fixing diatoms was considerably lower in the reach downstream of the RWRF. The percent of N-fixing diatoms was considerably lower in the reach downstream of the RWRF. The percent of N-fixing diatoms was considerably lower in the reach downstream of the RWRF. The percent of N-fixing diatoms was considerably lower in the reach downstream of the RWRF. The percent of N-fixing diatoms was considerably lower in the reach downstream of the RWRF. The percent of N-fixing diatoms was considerably lower in the reach downstream of the RWRF than in the reach upstream of the RWRF.

Lastly, the percent of diatoms indicative of low N and P had similar patterns to the percent of Nfixers; whereas, the percent of diatoms indicative of high N and P had nearly opposite patterns (see Appendix E, Table 2). The percent of diatoms indicative of low N ranged from 0–11.7 with an average of 5.4 in the reach upstream of the RWRF and 1.8–4.8 with an average of 2.9 in the in the reach downstream of the RWRF. The percent of diatoms indicative of low P ranged from 3.5– 11.7 with an average of 6.5 in the reach upstream of the RWRF and 1.4–7.2 with an average of 4.1 in the in the reach downstream of the RWRF. The percent of diatoms indicative of high N ranged from 52.9–70.5 with an average of 61.6 in the reach upstream of the RWRF and 50.4–75.9 with an average of 63.4 in the in the reach downstream of the RWRF. The percent of diatoms indicative of high P ranged from 52.9–69.5 with an average of 61.2 in the reach upstream of the RWRF and 48.0–75.9 with an average of 61.0 in the in the reach downstream of the RWRF. The lowest relative abundance of diatoms indicative of low N and P were observed at Site 4, with generally lower percentages downstream of the RWRF. In contrast, the highest relative abundance of diatoms indicative of high N and P were observed at Site 4. However, by Site 5 these decrease to similar percentages as those observed upstream of the RWRF.

4 ANALYSIS AND ASSESSMENT

4.1 Comparisons of 2012-2013 and 2018 Assessments

4.1.1 Water Quality

In situ water quality measurements (water temperature, dissolved oxygen, pH, conductivity, turbidity) are routinely measured in aquatic assessments to establish general conditions, including the influences of local environmental conditions, seasonal and annual variability, and the ability to support aquatic life. Although Hafele (2013) recorded no in situ water quality data, both the ODEO (2014) and Brown and Caldwell (2014) studies included measurements of in situ water quality parameters, including water temperature, dissolved oxygen, pH, and conductivity across sites sampled at differing times of day both upstream and downstream of the outfall. In general, these data and data collected in 2018 show similar in situ water quality upstream and downstream of the RWRF, with dissolved oxygen consistently at or near saturation and reflecting the range of conditions and variability found throughout the Rogue River as presented in ODEQ (2014). Variability in dissolved oxygen and pH might be expected during periods of higher solar insolation and photosynthetic activity (daytime) followed by lower dissolved oxygen concentrations during low light levels (night) when bacterial and phytoplankton respiration were expected to exceed re-aeration at the surface of the Rogue River. Continuous data collected by Brown and Caldwell (2014) showed similar variability in DO and pH at locations upstream and downstream of the RWRF outfall, indicating that algae and aquatic vascular plants were not differentially influencing in situ water quality parameters, such as dissolved oxygen, that might be expected to influence suitability for BMI and fish.

Although Hafele (2013) and ODEQ (2014) did not collect nutrient data that might be used to indicate the potential for biostimulatory growth of algae and macrophytes, both Brown and Caldwell (2014) and the current study can be used to compare conditions upstream and downstream of the RWRF outfall. A comparison of the nutrient levels by Brown and Caldwell (See Table 2-4) and samples collected in 2018 (Table 3-4) show elevated N and P concentrations at sites downstream of the RWRF outfall, including sites below the Bear Creek confluence sampled in 2018. Excluding the samples collected downstream of Bear Creek, statistical comparisons of the three sites downstream of the RWRF (Sites 4-6) and the three upstream sites (Sites 1–3) and using a two-tailed t-test with equal variance were performed. The results in Table 3-4 show that TIN and soluble Phosphorus (PO₄) concentrations were greater in the downstream group, and the t-tests confirmed these differences were statistically significant.

As discussed in Section 3.3.2, the ratio of TIN:PO₄ can be used to indicate the nutrient balance in aquatic systems and assist with indicating an over- or under-abundance (i.e., nutrient limitation) of one nutrient or another. Consistent with slightly elevated background phosphorus levels in the Rogue River basin soils resulting from the eruption and ash fall of Mt. Mazama (Dingus 1974), Brown and Caldwell (2014) found nitrogen limitation in samples both upstream and downstream of the RWRF. The 2018 results show a similar pattern of excess phosphorus and overall nitrogen limitation at one site upstream and all sites downstream of the RWRF (Table 3-4). These results suggest that nitrogen reductions from the RWRF as well as other upstream sources may reduce the potential for biostimulatory growth of algae in the Middle Rogue River both upstream and downstream of the RWRF.

4.1.2 Selected BMI Metrics

The Hafele (2013), Brown and Caldwell (2014), and the 2018 studies used similar analytical assessment methodology, while the ODEQ (2014) study provided a qualitative summary of "density," "dominant taxon," and "diversity." All four of the studies depict lower abundance and richness at least in one sampling location downstream of the RWRF, potentially indicating a localized response to the RWRF discharge. Hafele (2013) showed all of the selected BMI metrics in that study were consistently lower, and non-insect taxa increased, downstream of the RWRF. While not all BMI metrics in Brown and Caldwell (2014) and the 2018 studies showed at least one sampling location per metric which depicted conditions outside the range of those upstream of the RWRF outfall. Brown and Caldwell (2014) and the 2018 studies did show that both EPT richness and percent sensitive individuals were consistently lower downstream of the RWRF outfall.

In all studies, there were decreases in relative abundance of intolerant and an increase of noninsect BMI downstream of the RWRF outfall. Both Hafele (2013) and ODEQ (2014) note there was a decrease in the relative abundance of intolerant individuals at the site directly below the outfall, which subsequently increased at the next site downstream. The Brown and Caldwell (2014) and the 2018 studies, however, showed depressed relative abundances of intolerant individuals at the second site downstream of the outfall. Where the Brown and Caldwell (2014) data show recovery in relative abundance of intolerant individuals further downstream, the 2018 study did not show statistically significant differences in BMI abundances. However, excluding samples collected below the Bear Creek confluence (Site 7), 2018 BMI results (Table 3-5) from the three sites downstream of the RWRF (Sites 4–6) and the three upstream sites (Sites 1–3) showed species richness (total and EPT) as well as EPT abundance and total sensitive individuals were lower in the downstream sites to a statistically significant degree using a two-tailed t-test with equal variance.

The 2018 study also showed a corresponding increase in the relative abundance of tolerant individuals downstream of the RWRF outfall, and these data did show a slow recovery (i.e., a reduction in relative abundance of tolerant individuals with increased distance downstream). The patterns observed in relative abundance of tolerant individuals closely matched those of the non-insect taxa in all four studies and the 2018 study showed statistically significant increases in percent non-insect individuals at the three sites (Sites 4–6) downstream of the RWRF in comparison to upstream sites (Sites 1–3).

Despite the minor differences in BMI results among the studies, there were some consistent trends in EPT abundance, richness and percent sensitive individuals. These trends suggest both general perturbation and nutrient enrichment immediately downstream of the RWRF with some recovery apparent at either the second or third site downstream of the outfall depending on the study and metric.

4.1.3 Selected Periphyton Metrics

Periphyton algae conditions were assessed in each of the previous studies as well as the 2018 study. Based upon photographs and periphyton sampling presented in Hafele (2013), as well as qualitative observations reported in ODEQ (2014), the riffles downstream of the RWRF outfall showed accumulations of attached algae somewhat greater than riffles at locations upstream of the outfall. The ODEQ (2014) study reported "light" to "moderate" cover throughout the upper and lower reaches of the main stem Rogue River, with an estimate of "heavy" in the reach below the outfall. That study also reported nuisance algal growth at several points in both the upper and

lower survey reaches. As discussed in Section 2.3.2, ODEQ (2014) found several sites with high algae cover both upstream and downstream of the RWRF, and suggested that conditions below the Cole M. Rivers fish hatchery and downstream of the Medford RWRF showed high algae cover and signs of altered macroinvertebrate assemblages. ODEQ (2014) reported that macrophyte density in the main channel below the RWRF was higher than observed at any other site surveyed in 2013. The 2018 data showed highly variable algae and macrophyte cover both upstream and downstream of the RWRF outfall (Table 3-3), with the highest apparent algae cover at Site 4 immediately downstream of the outfall. Macrophyte cover was highest at Site 5, approximately one mile downstream of the outfall.

In addition to apparent patterns of algae and macrophyte cover, Hafele (2013), Brown and Caldwell (2014), and the 2018 study analyzed metrics commonly used to assess algal samples (Section 1.4.2), including; identification of taxa, total abundance expressed as cell density (number of cells per cm²), and total biovolume (cubic microns per cm²). The ODEQ (2014) study provided taxa identification along with a qualitative assessment of overall abundance and dominant taxa. Results from the Hafele (2013) study show large increases in both algae cell density and biovolume below the RWRF outfall. Brown and Caldwell (2014) show elevated algae cell densities downstream of the outfall, with decreased algae biovolume, with overall lower values than were reported by Hafele (2013). The Brown and Caldwell (2014) results may have been affected by a rainfall event prior to sampling that increased streamflow and could have scoured the algae. The 2018 study results showed a pattern and magnitude more similar to Hafele (2013), with large increases in both algal cell density and biovolume below the outfall. Figure 3-2 shows cell density and biovolume indicators of biomass that were greater in the three sites downstream of the RWRF (Sites 3–6) than the three upstream sites (Sites 1–3) to a statistically significant degree using a two-tailed t-test with equal variance.

In comparison to Hafele (2013) and Brown and Caldwell (2014), the 2018 study showed that the proportions of diatoms indicative of low nutrient (N and P) conditions decreased in samples collected downstream relative to samples collected upstream of the RWRF; whereas, the proportions of diatoms indicative of high nutrient (N and P) conditions increased. The proportions of sensitive and tolerant diatoms also varied moving from upstream to downstream, with greater proportions of tolerant diatoms at the three sites downstream of the RWRF (Sites 4–6) in comparison to the upstream sites (Sites 1–3) to a statistically significant degree. Acknowledging some changes in percentages of various indicator taxa in 2018 such as *A. minutissima*, species richness, Shannon's diversity as well as dominant taxon and individual species were equally represented in the reaches upstream and downstream of the RWRF.

4.2 Discussion

This section evaluates Rogue River conditions downstream of the RWRF's 300-foot regulatory mixing zone, as well as the extent to which discharges from the RWRF may be contributing to those conditions, as they relate to the biocriteria standard set forth in OAR 340-041-0011 and the other narrative water quality standards set forth in OAR 340-041-0007(9)-(13). The evaluation is based on review and analysis of the 2012–2013 and 2018 studies described above.

4.2.1 Statewide narrative criteria–OAR 340-041-0007(9)-(13)

Based upon visual observations and individual aesthetic judgments made during the 2012–13 and 2018 studies described above, this section considers whether the RWRF discharge results in "objectionable discoloration," "floating solids," and the presence of "aesthetic conditions offensive to the human senses of sight, taste, smell, or touch" in the Rogue River downstream of

the RWRF's 300-foot regulatory mixing zone as relevant to Oregon's statewide narrative criteria contained in OAR 340-041-0007 (9) through (13).

OAR 340-041-0007 (9) – "the development of fungi or other growths having a deleterious effect on stream bottoms, fish or other aquatic life, or that are injurious to health, recreation, or industry may not be allowed;"

Photographs as well as periphyton sampling presented in Hafele (2013), as well as qualitative observations reported in ODEQ (2014), suggest that the riffles downstream of the RWRF outfall had accumulations of attached algae in greater amounts than upstream of the outfall. Although ODEQ (2014) identified several locations exhibiting localized growths on the stream bottom upstream of the RWRF, the 2018 study partially corroborated higher algae cover estimates and documented increased algal cell density and biovolume at locations downstream of the RWRF. While increases in algal cover and density appear to result in changes to the BMI community with some potential for consequences to the aquatic food web (See Section 4.2.2), similar algae cover conditions were documented by ODEQ (2014) at the Cole. M. River hatchery upstream of the RWRF. For this reason, it is uncertain whether the patterns in algal cover were solely attributable to the RWRF discharge vs. other nutrient sources, whether such conditions were persistent at all times of year, and whether such conditions might be partially explained by natural spatial variations in algae growth within riffle habitats of the Rogue River.

OAR 340-041-0007 (10) – "the creation of tastes or odors or toxic or other conditions that are deleterious to fish or other aquatic life or affect the potability of drinking water or the palatability of fish or shellfish may not be allowed;"

Odors were observed during the studies, but there are no references in the studies to variations in taste and odors related to the potability of drinking water, the palatability of fish or shellfish, or potential toxicity agents associated with the RWRF outfall. In addition, few blue-green algae species were identified by Hafele (2013), ODEQ (2014), or Brown and Caldwell (2014), and none that were associated with algal toxins. Accordingly, there is no basis in the 2012–2013, or 2018 studies for concluding that "tastes or odors or toxic or other conditions" in the river have an effect on the uses described in this standard due to discharges from the RWRF. The aesthetic aspects of odors observed during the studies are addressed further below under OAR 340-041-0007(13).

OAR 340-041-0007 (11) – "the formation of appreciable bottom or sludge deposits or the formation of any organic or inorganic deposits deleterious to fish or other aquatic life or injurious to public health, recreation, or industry may not be allowed;"

We were unaware of sufficient suspended sediments or residual organic matter in the RWRF discharge that would result in identifiable deposits. As such, there is no basis for concluding that discharges from the RWRF are creating river deposits relevant to this standard.

OAR 340-041-0007 (12) – "objectionable discoloration, scum, oily sheens, or floating solids, or coating of aquatic life with oil films may not be allowed;

The 2012–13 studies observed a visual plume from the RWRF outfall that extended downstream beyond the regulatory mixing zone. Observations of surface bubbles were apparent at Site 4 in October 2018, approximately 0.4 RM downstream of the RWRF outfall, but these bubbles were

not found at sites farther downstream. Recognizing that the RWRF outfall design is associated with air entrainment that routinely results in foam downstream (ODEQ 2011), it is plausible that accumulation of floating materials in the river may be attributed to the dissolved air in the discharge. Other than NPDES-permitted discharges of TSS from the RWRF, there is no indication that this discharge contained floating solids or other pollutants associated with OAR 340-041-0007 (12).

OAR 340-041-0007 (13) – "aesthetic conditions offensive to the human senses of sight, taste, smell, or touch may not be allowed."

The previous studies refer to odors attributed to discharges from the RWRF. These observations were presumably based upon observable differences of aesthetic conditions upstream and downstream of the RWRF outfall. Stillwater staff noted odors related to treatment processes were apparent at Site 4 in October 2018, approximately 0.4 miles downstream of the RWRF outfall, but were not noticed at sites farther downstream. Whether these odors were "offensive" within the meaning of the narrative standard is a subjective determination that cannot be assessed objectively.

4.2.2 Biocriteria–OAR 340-041-0011

OAR 340-041-0011 states that "Waters of the State must be of sufficient quality to support aquatic species without detrimental changes in the resident biological communities." OAR 340-041-0002(75) defines "without detrimental changes in the resident biological community" as "no loss of ecological integrity when compared to natural conditions at an appropriate reference site or region." "Ecological integrity" is defined, in turn, by OAR 340-041-0002(19) as "the summation of chemical, physical and biological integrity capable of supporting and maintaining a balanced, integrated, adaptive community of organisms having a species composition, diversity, and functional organization comparable to that of the natural habitat for the region." As noted in Section 1.4, the ongoing presence of the upstream William Jess Dam at RM 158, legacy effects of historical and present day land uses, as well as the influences of ongoing point and non-point discharges prevent the direct assessment of local conditions downstream of the RWRF in comparison to "natural habitat" for this region. OAR 340-041-0002(5) defines an "appropriate reference site or region" as "a site on the same water body or within the same basin or ecoregion that has similar habitat conditions, and represents the water quality and biological community attainable within the areas of concern." Lacking an appropriate reference site, this study relies upon comparisons of sampling results from sites upstream and downstream of the RWRF as an accepted basis of comparison by ODEQ (2018). The paragraphs below discuss differences in water quality conditions upstream and downstream of the RWRF as well as periphyton and BMI metrics used to indicate suitable conditions for the resident biological community.

Water Quality Conditions

While DO, pH and other in situ water quality parameters show similar variability upstream and downstream of the RWRF (Section 4.1.1), a comparison of the nutrient levels by Brown and Caldwell (2014) and samples collected in 2018 show elevated N and P concentrations at sites downstream of the RWRF outfall, with further increases at the site downstream of the Bear Creek confluence that was sampled in 2018. As suggested by ODEQ (2014), there are likely multiple nutrient sources to the Middle Rogue River upstream as well as downstream of the RWRF. Nevertheless, the consistent patterns in periphyton and BMI metrics discussed below suggest the potential for discharges from the RWRF to contribute to the observed changes in the resident

biological community, changes which represent a shift away from the biological communities that would be otherwise attainable.

Periphyton and BMI Indicator Metrics

Using selected indicators of biotic integrity and impairment (Section 1.4), periphyton and BMI metrics from Hafele (2013), Brown and Caldwell (2014), and other sources (see Section 1.4) were compared with the 2018 study at locations downstream of the RWRF outfall. As noted in Section 4.1.3, periphyton biomass indicators were greater in the three sites downstream of the RWRF (Sites 3–6) than the three upstream sites (Sites 1–3) in 2018 to a statistically significant degree. While the taxa represented as well as richness and diversity measures were similar at sites upstream and downstream of the RWRF, the proportions of sensitive and tolerant diatoms varied between upstream and downstream locations, with significantly greater proportions of tolerant diatoms at the three downstream sites (Sites 4–6).

BMI metrics from the three studies as well as data collected in October 2018 depict lower BMI abundance (total and EPT) at Site 4 approximately 0.4 miles downstream of the RWRF, with gradual recovery of EPT taxa at sites farther downstream. Similar to other studies that indicate a reduction in taxa richness downstream of point sources (Ortiz & Puig 2007), EPT taxa richness and the percentage of other sensitive taxa generally decrease immediately downstream of the RWRF, concurrent with an increase of tolerant, generally non-insect taxa at these locations. While the taxa represented were generally similar at sites upstream and downstream of the RWRF, BMI species richness (total and EPT) as well as EPT abundance and total sensitive individuals were lower in the downstream group to a statistically significant degree, excluding samples collected below the Bear Creek confluence (Site 7).

Other Potential Linkages to Resident Biological Community

Although this report does not directly estimate fish abundance or habitat use in the vicinity of the RWRF, the Middle Rogue River currently supports spawning and rearing of a variety of Pacific salmonids and other native and introduced fish species. Based upon documented spawning use of the riffles immediately downstream of the RWRF by Brown and Caldwell (2014) and during October 2018, as well as reports of regular use of the pool immediately downstream of the outfall by recreational fisherman (Freeman 2014), ongoing discharges do not appear to be substantially affecting these fishes' habitat use downstream of the RWRF. Recognizing, however, that the 2012–13 studies (Hafele 2013, Brown and Caldwell 2014, ODEQ 2014), and the 2018 study show changes in nutrient, periphyton and BMI metrics when comparing sites located outside the 300-ft RMZ downstream of the RWRF to sites located farther upstream, we discuss potential ecological linkages to the broader aquatic food web downstream of the RWRF outfall in the paragraphs below using BMI functional feeding group data presented in Appendix D.

The functional composition of the BMI community, which is quantified as the proportions of different FFGs, has implications for ecosystem functioning (Minshall et al. 1983). Based on feeding behavior, five different FFGs are commonly used in stream bioassessments, including shredders, collector-gatherers, collector-filterers, scraper-grazers, and predators (Cummins and Klug, 1979; Vannote et al. 1980). FFGs may respond to changes in habitat conditions differently in multiple ways especially with groups such as collectors (filterers and gatherers) and predators (Allan and Castillo 2007). For example, relative abundance of scrapers would be expected to increase with increasing periphyton abundance. However, scraper abundance was somewhat lower downstream of the RWRF outfall in the 2018 study, with some increases at Site 5 (see Appendix D, Figure 5). The decreases in scraper abundance in the reach downstream of the RWRF may be in part due to variations in algal abundance, and/or other abiotic and biotic

stressors (e.g., flow, sediment, macrophytes). Despite some differences at Site 5, collectors increased downstream of the outfall, which has been shown to occur in other studies comparing habitats upstream and downstream of wastewater treatment facilities' outfalls (Bo and Fenoglio 2011, Quinn and Hickey 1993, Marcogliese 2015).

In drawing linkages of BMI taxa to the broader aquatic food web, longer life cycles and invertebrate size are positively correlated (Zeuss et al. 2017) and size is often positively associated with higher caloric content of BMI consumed as prev items (Ojala 2008, Allan and Castillo 2007). The increase of collector FFGs discussed above is consistent with a relative increase of BMI species with multiple broods per year (i.e., multivoltinism) that is seen in the BMI data (Appendix D, Figure 6). When the relative abundance of taxa in different voltine classifications was compared among sites, there was a higher abundance of multivoltine (< 1-year life cycles) and depressed abundance of semivoltine (> 1-year life cycles) BMI downstream of the outfall. This is particularly clear at Sites 6 and 7, and arguably noticeable at Site 4 (See Appendix D, Figure 5 [BMI FFGs] and Figure 6 [BMI life cycles]). Conceptually, the loss of longer lived and larger BMI individuals may affect food supply for stream fishes. For example, Ringler (1979) found that while brown trout prefer large prey with higher caloric values (mealworms) over smaller lower caloric value items (brine shrimp), their non-preferred prey were never excluded from their diet (Allan and Castillo 2007). Thus, reduction in the abundance of larger preferred prey may result in insectivorous fish switching to feeding on smaller, lower quality (lower caloric content) previtems, which in turn may result in increased bioenergetics foraging demands if the fish need to expend more energy to catch larger number of small prey items. Reductions in bioenergetics efficiency of foraging may lead to reduced fish growth rates and increased exposure to predation if the change in food supply requires them to spend more time foraging away from protected sites.

While the balance in relative abundance of BMI FFGs and voltine groups appears to change downstream of the outfall, the food web implications of these patterns discussed above are only speculative. While it is possible that the observed localized periphyton accumulations may result in locally lower caloric content in BMI food resources used by fish and wildlife, no sampling was conducted nor existing data identified to examine the carrying capacity, diet, and foraging behavior of higher trophic level species upstream and downstream of the RWRF. Longer-term BMI and food web studies would be required to indicate whether food resources are limiting at one or more trophic levels, and whether these effects are partially or solely attributable to the RWRF.

Summary

Overall, review of Hafele (2013), Brown and Caldwell (2014), and ODEQ (2014) and comparison with the 2018 data indicate locally high periphyton and macrophyte cover and shifts in algae and BMI community metrics downstream of the RWRF outfall. Comparison of water quality, periphyton, and BMI data suggest that the resident biological communities downstream of the RWRF outfall were likely responding to nutrient enrichment, leading to locally high algae accumulation (increased cover, cell density, and biovolume) at sites located downstream of the RWRF outfall and 300 ft RMZ. While the taxa represented as well as broad species richness and diversity measures were similar at sites upstream and downstream of the RWRF, significantly greater proportions of tolerant diatoms were documented at the three downstream sites (Sites 4–6) relative to sites upstream of the RWRF outfall. In addition, BMI abundance (2012–2013 studies only), species richness (total and EPT), EPT abundance, as well as total sensitive individuals were significantly lower at sites located downstream of the RWRF outfall relative to upstream sites. While data related to fish and wildlife food resources were not directly examined, BMI data

collected as part of this study may indicate a reduction in the average caloric content of BMI available as prey for insectivorous fish at the surveyed locations downstream of the RWRF. Although the taxa identified in the 2012–2013 and 2018 studies are represented at locations both upstream and downstream of the RWRF, based upon an assumption that data collected at upstream sites are representative of "water quality and biological community attainable within the areas of concern", the periphyton and BMI metrics examined in this study suggest the RWRF discharges potentially contribute to local effects to the resident biological community that represent a shift away from the biological communities that would be otherwise attainable.

5 CONCLUSIONS AND RECOMMENDATIONS

After review of three previous studies of the Rogue River (Hafele 2013, Brown and Caldwell 2014, ODEQ 2014) in relation to Oregon's biocriteria (OAR 340-041-0011) and other narrative water quality standards set forth in OAR 340-041-0007(9)-(13), Stillwater Sciences conducted follow-up sampling in October 2018 at previous study sites plus some additional sites along the Rogue River upstream and downstream of the RWRF in order to assess the findings of the previous studies and provide estimates of temporal as well as site-to-site variability in the reported indices. Consistent with ODEQ (2018) policy regarding biocriteria comparisons using appropriate reference sites, comparisons of metrics describing algal and BMI community composition were conducted along with comparisons of physical and water quality conditions upstream and downstream of the RWRF discharge location. Based on analysis and assessment of the previous 2012–2013 studies and additional information collected in 2018, this report makes the following findings.

- In situ measurements of dissolved oxygen (DO) and pH were similar upstream and downstream of the RWRF. Continuous measurements of these parameters collected by Brown and Caldwell (2014) also show similar variation upstream and downstream of the RWRF and no evidence of DO depletion nor DO and pH variation indicative of nuisance levels of algae in the Rogue River.
- ODEQ (2014) noted multiple sources of nutrients to reaches of the Rogue River upstream and downstream of the RWRF and a comparison of the nutrient levels by Brown and Caldwell (2014) and samples collected in 2018 show statistically significant elevated N and P concentrations at sites downstream of the RWRF outfall relative to upstream locations.
- Comparisons of visual estimates of periphyton and macrophyte cover were variable at tributary confluences and other sites upstream and downstream of the RWRF (ODEQ 2014). In 2018, the highest cover was at sites downstream of the RWRF outfall as well as at other tributary locations.
- Periphyton biomass (cell density and biovolume) was greater in the three sites downstream of the RWRF (Sites 3–6) compared to the three upstream sites (Sites 1–3) in 2018 to a statistically significant degree. Additionally, relative abundance of diatoms indicative of higher nutrient (N and P) conditions was also higher in most samples collected downstream of the RWRF relative to samples collected upstream. Despite these community shifts, richness measures and the dominant algal taxa were generally similar in reaches upstream and downstream of the RWRF.

• BMI sampling in all studies showed changes in community composition consistent with the effects of excess nutrient loading. All studies showed reduced EPT richness and percent sensitive individuals in the riffle immediately downstream of the RWRF. While not definitively attributable to the RWRF, sampling at other sites farther downstream found other BMI metrics selected for this assessment at levels below the ranges found in all sites sampled upstream of the RWRF. Species richness (total and EPT) as well as EPT abundance and total sensitive individuals were lower at sites downstream of the RWRF to a statistically significant degree.

With respect to Oregon's statewide narrative criteria contained in OAR 340-041-0007 (9) through (13), this report makes the following findings.

- OAR 340-041-0007 (9) (*Development of fungi and other growths*). Semi-quantitative algae cover data collected by ODEQ (2014) as well as periphyton metrics collected by Hafele (2013), Brown and Caldwell (2014), and by this study in 2018 suggest that the riffle habitats downstream of the RWRF have accumulations of attached algae in greater amounts than upstream of the outfall. While the potential for effects on aquatic food resources for fish are discussed below, it is uncertain whether the patterns in algal cover were solely attributable to the RWRF discharge vs. other nutrient sources, whether such conditions were persistent at all times of year, and whether such conditions might be partially explained by natural spatial variations in algae growth within riffle habitats of the Rogue River.
- OAR 340-041-0007 (10) (*Taste and Odor, Toxicity*). None of the studies contains references to or found variations in taste and odors related to the potability of drinking water, the palatability of fish or shellfish, or potential toxicity agents associated with the RWRF outfall. Accordingly, there is no basis for concluding that the conditions described in the standard exist in the river.
- OAR 340-041-0007 (11) (*Formation of Bottom Deposits*). None of studies found accumulations of bottom deposits, and no RWRF discharge data suggests that there are sufficient suspended sediments or residual organic matter in the discharge to result in identifiable deposits. Accordingly, there is no basis for concluding that the conditions described in the standard exist in the river.
- OAR 340-041-0007 (12) (*Objectionable discoloration, scum, oily sheens, floating solids*). Recognizing that the RWRF outfall design is associated with air entrainment that routinely results in foam downstream (ODEQ 2011), there is no indication that this discharge contained floating solids other than NPDES-permitted discharges of residual TSS from the RWRF. Accordingly, there is no basis for concluding that the conditions described in the standard exist in the river.
- OAR 340-041-0007 (13) (*Offensive aesthetic conditions*). The studies include several observations of odor associated with the discharge from the RWRF. Observations of odor related to RWRF treatment processes were apparent at Site 4 in October 2018, approximately 0.4 miles downstream of the RWRF outfall, but were not found at sites farther downstream. Whether these odors were "offensive" within the meaning of the narrative standard is a subjective determination that cannot be assessed objectively.

With respect to Oregon's biocriteria standard contained in OAR 340-041-0011, this report makes the following findings.

- Review of Hafele (2013), Brown and Caldwell (2014), and ODEQ (2014) in comparison to the 2018 data indicates locally high periphyton and macrophyte cover, increases in periphyton biomass, and shifts in algae and BMI community metrics at locations downstream of the 300-ft RMZ below the RWRF outfall.
- Comparison of nutrients in water samples, periphyton and BMI indicators data suggest that the resident biological community downstream of the RWRF outfall was likely responding to nutrient enrichment downstream of the RWRF outfall. In addition to increases in apparent algae and macrophyte cover, statistically significant differences in periphyton biomass (cell density, and biovolume) and reductions in BMI indicators (total richness, EPT richness, EPT abundance and total sensitive individuals) were found at sites downstream of the RWRF. Additionally, and while data related to fish and wildlife food resources were not examined, BMI data collected as part of this study may indicate a reduction in the average caloric content of BMI used as prey items by fish at locations downstream of the RWRF.
- Although the taxa identified in the 2012–2013 and 2018 studies are represented at locations both upstream and downstream of the RWRF, based upon an assumption that data collected at upstream sites are representative of "water quality and biological community attainable within the areas of concern," the periphyton and BMI data examined in this study suggest the RWRF discharges contribute to local effects on the resident biological community that represent a shift away from the biological community that would be otherwise attainable.

As noted in ODEQ (2018), identified differences in biological communities relative to reference sites do not by themselves indicate if changes are related to pollutants, or identify which pollutant should be addressed by point source or other controls through a Total Maximum Daily Load (ODEQ 2018). Given the relatively high background phosphorus levels in the headwaters of the Rogue River basin and identified excess of phosphorus both upstream and downstream of the RWRF, the Rogue River is likely somewhat nitrogen limited and responding to incremental nitrogen loads from multiple sources to the Middle Rogue River. As evidenced by local algae accumulation observed by ODEQ (2014) and the current study downstream of tributary junctions and known nitrogen sources such as the Cole M. River hatchery, it should be noted that local algae accumulation in these and other locations will likely occur in the future regardless of any nutrient control contemplated by the City. Nevertheless, even incremental reductions in nitrogen discharges may be expected to reduce algae growth in the reach immediately downstream of the RWRF. Additional receiving water sampling to confirm limiting nutrients, as well as sampling within the RWRF process train, would be needed to inform approaches to be taken and the design basis to reduce nitrogen discharges.

6 REFERENCES

- Allan, D.J., and M.M. Castillo. 2007. Chapter eight: Trophic Relationships. Stream Ecology: Structure and Function of Running Waters. Ed. 2. Chapman and Hall, New York.
- Bahls, L.L., 1993, Periphyton bioassessment methods for Montana streams: Helena, MT., Water Quality Bureau, Department of Health and Environmental Sciences, 69 p.
- Bahls, L.R., R. Burkantis, and S. Tralles. 1992. Benchmark biology of Montana reference streams. Department of Health and Environmental Science, Water Quality Bureau, Helena, Montana.
- Barbour, M.T., J. Gerritsen, B.D. Snyder, and J.B. Stribling. 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish, Second Edition." EPA. Document No. 841-B-99-002.
- Barbour, M.T.; Stribling, J.B.; Karr, J.R. 1995. The Multimetric Approach for Establishing Biocriteria and Measuring Biological Condition. In Biological Assessment and Criteria: Tools for Water Resource Planning and Decision Making; Davis, W.S., Simon, T.P., Eds.; Lewis Publishers: Boca Raton, FL, USA, 1995; pp. 63–77.
- Barbour, M.T., and C.O. Yoder. 2000. The multimetric approach to bioassessment, as used in the United States of America. Pages 281-292 in J.F. Wright et al., editors. Assessing the Biological Quality of Fresh Waters: RIVPACS and Similar Techniques. Freshwater Biological Association, Ambleside, UK.
- Beermann, A.J., V. Elbrecht, S. Karnatz, L. Ma, C.D. Matthaei, J.J. Piggott, and F. Leese. 2018. Multiple-stressor effects on stream macroinvertebrate communities: a mesocosm experiment manipulating salinity, fine sediment and flow velocity. Science of the Total Environment 610–611 (2018): 961–971.
- Bo, T. and S. Fenoglio. 2011. Impacts of a micro-sewage effluent on the biota of a small Apennine creek. Journal of Freshwater Ecology 26 (4): 537-545.
- Bray, J. R., and J. T. Curtis, 1957. An ordination of the upland forest communities of Southern Wisconsin. Ecol. Monogr. 27: 325-349.
- Brown and Caldwell. 2014. City of Medford Regional Wastewater Reclamation Facility Mixing Zone and Biological Assessment Study Report.
- Capmourteres, V., N. Rooney, and M. Anand. 2018. Assessing the causal relationships of ecological integrity: a re-evaluation of Karr's iconic Index of Biotic Integrity. Ecosphere 9(3):e02168. 10.1002/ecs2.2168
- Carpenter, K.D., 2003, Water-quality and algal conditions in the Clackamas River Basin, Oregon, and their relations to land and water management: U.S. Geological Survey Water-Resources Investigations Report 02–4189, 114 p.

- Chang, F.H., J.E. Lawrence, B. Rios-Touma, and V.H. Resh. 2013. Tolerance values of benthic macroinvertebrates for stream biomonitoring: assessment of assumptions underlying scoring systems worldwide. Environmental Monitoring and Assessment 186(4): 2135-49.
- Cooper, J.M. and J.L. Wilhm. 1975. Spatial and temporal variability in productivity, species diversity, and pigment diversity of periphyton in a stream receiving domestic and oil refinery effluents. Southwestern Naturalist 19:413-428.
- Covich, A. P., M. A. Palmer & T. A. Crowl, 1999. The role of benthic invertebrate species in freshwater ecosystems. BioScience 49: 119–127.
- Cummins, K.W., and M.J. Klug. 1979. Feeding ecology of stream invertebrates. Annu. Rev. Ecol. Syst. 10, 147–172
- Declan, J.M. and N.J. Gotelli. 2000. Effects of disturbance frequency, intensity, and area on assemblages of stream macroinvertebrates. Oecologia 124: 270–279.
- Delong, M.D., and M.A. Brusven. 1998. Macroinvertebrate community structure along the longitudinal gradient of an agriculturally impacted stream. Environ. Manage. 22, 445–457.
- DeShon, J.E. 1995. Development and application of the invertebrate community index (ICI). Pages 217-243 in W.S. Davis and T.P. Simon (editors). Biological assessment and criteria: Tools for water resource planning and decision making. Lewis Publishers, Boca Raton, Florida.
- Dingus, D. 1974. The Nature and properties of amorphous colloids formed from Mazama tephra. Ph. D. thesis, Department of Soil Science, Oregon State University, Corvallis.
- Erye, M.D., G.N. Foster, and A.P. Foster. 1990. Factors affecting the distribution of water beetle species assemblages in drains of eastern England. J. Appl. Ent. 109: 217-225.
- Freeman, M. 2014. "6 fly-fishing spots on Oregon's upper Rogue River". Washington Times, Saturday, April 26, 2014. <u>https://www.washingtontimes.com/news/2014/apr/26/6-fly-fishing-spots-on-oregons-upper-rogue-river/</u> (Accessed January 11, 2019)
- Graça, M.A.S, R.C.F Ferreira, and C.N. Coimbra. 2001. Litter processing along a stream gradient: the role of invertebrates and decomposers. Journal of North American Benthological Society 20(3): 408-420.
- Hafele, 2013. Medford Regional Water Reclamation Facility Outfall Assessment Study. Prepared for the Rogue Fly Fishers and Federation of Fly Fishers. January.
- Hauer, F.R. and G. A. Lamberti (Eds.). 2006. Methods in Stream Ecology (2nd ed.). Academic Press, San Diego, CA.
- Hicks, D. 2005. Lower Rogue Watershed Assessment. Lower Rogue Watershed Council. December 2005. <u>http://www.currywatersheds.org/Page.asp?NavID=57</u> (Accessed 12/12/2013)

- Hill, B.H., A.T. Herlihy, P.R. Kaufmann, S.J. DeCelles, and M.A. vander Borgh. 2003. Assessment of streams of the eastern United States using a periphyton index of biotic integrity. Ecol. Indic. 2, 325–338.
- Hubler, S. 2007. Development and use of RIVPACS-type macroinvertebrate models to assess the biotic integrity of wadeable Oregon streams: PREDATOR. Document number: DEQ06-LAB-0062-TR. Oregon Department of Environmental Quality, Watershed Assessment Section. Portland, OR.).
- Hilsenhoff, W.L. 1987. An improved biotic index of organic stream pollution. Great Lakes Entomologist 20: 31-39.
- Hornig, C.E. and J.E. Pollard.1978.Macroinvertebrate sampling techniques for streams in semiarid regions. Comparison of surber method and unit-effort traveling kick method. Off. Res. Devel., Environ. Monit. Sup. Lab., EPA 600/4-78-040.U.S. EPA, Las Vegas, NV.
- Hughes, R. M., D. P. Larsen, and J. M. Omernik. 1986. Regional reference sites: a method for assessing stream potentials. Environmental Management 10:629–635
- Hynes, H.B.N., 1972. The Ecology of Running Waters. Univ. of Toronto Press.
- Karr, J. R. 1981. Assessment of biotic integrity using fish communities. Fisheries 6 6:21-27
- Karr, J.R. 1991. Biological integrity: A long-neglected aspect of water resource management. Ecol. Appl. 1991, 1, 66–84.
- Karr, J. R. 1998. Rivers as sentinels: using the biology of rivers to guide landscape management. In: River Ecology and Management: Lessons from the Pacific Coastal Ecosysten (Eds. R. J. Naiman & R. E. Bilby), pp. 502-528. Springer, NY.
- Karr, J.R. 2006. Seven foundations of biological monitoring and assessment. Biol. Ambient. 2006, 20, 7–18.
- Karr J. R. and E. W. Chu. 1999. Restoring Life in Running Waters: Better Biological Monitoring. Island Press, Washington, DC.
- Lange-Bertalot, H. 1979. Pollution tolerance as a criterion for water quality estimation. *Nova Hedwigia* 64:285-304.
- Marcogliese, D.J., C. Blaise, D. Cyr, Y. de Lafontaine, M. Fournier, F. Gagne´, C. Gagnon, and C. Hudon. 2015. Effects of a major municipal effluent on the St. Lawrence River: A case study. AMBIO 44: 257-274.
- Matthaei, C.D., J. J. Piggott, and C.R. Townsend. 2010. Multiple stressors in agricultural streams: interactions among sediment addition, nutrient enrichment and water abstraction. Journal of Applied Ecology, 47: 639-649.
- Mazor, R. D., P. R. Ode, A. C. Rehn, M. Engeln, K. A. Schiff, E. Stein, D. Gillett, D. Herbst, and C. P. Hawkins. 2016. Bioassessment in complex environments: Designing an index for consistent meaning in different settings. The Society for Freshwater Science 35(1): 249-271.

- Minshall, G.W., R.C. Petersen, K.W. Cummins, T.L. Bott, J.R. Sedell, C.E. Cushing, and R.L. Vannote. 1983. Interbiome comparisons of stream ecosystem dynamics. Ecol. Monogr. 53:1–25.
- OAR 340-041-0275. Oregon Administrative Rules. http://arcweb.sos.state.or.us/pages/rules/oars_300/oar_340/340_041.html.
- Ode, P.R., A.C. Rehn, and J.T. May. 2005. A Quantitative Tool for Assessing the Integrity of Southern Coastal California Streams. Environmental Management 35(4): 493–504.
- ODEQ. 2009. Water Monitoring and Assessment Model of Operations Manual, Laboratory and Environmental Assessment Division, Hillsboro, Oregon, March
- ODEQ. 2011. NPDES Permit No. 100985 and Fact Sheet, Issued by the Oregon Department of Environmental Quality, Western Region, Salem, Oregon, December 2011.
- ODEQ. 2014. Rogue River Algae Reconnaissance: A response to the algae concerns related to the Medford WWTP. Water Quality Monitoring/Laboratory and Environmental Assessment Program. Portland, Oregon.
- ODEQ. 2018. Draft Methodology for Oregon's 2018 Water Quality Report and List of Water Quality Limited Waters. Water Quality Division. Oregon Dept. of Environmental Quality. Portland, Oregon. May.
- Ojala, J.V. 2008. Invertebrate Phenology and Prey Selection of Three Sympatric Species of Salmonids: Implications for Individual Fish Growth. Masters Thesis. University of Massachusetts Amherst.
- Ortiz, J.D. and M.A. Puig. 2007. Point source effects on density, biomass and diversity of benthic macroinvertebrates in a Mediterranean stream. River Research and Applications, 23 (2): 155–170.
- Plafkin, J.L., M.T. Barbour, K.D. Porter, S.K. Gross, and R.M. Hughes. 1989. Rapid bioassessment protocols for use in streams and rivers: Benthic macroinvertebrates and fish. U.S. Environmental Protection Agency, Office of Water Regulations and Standards, Washington, D.C. EPA 440-4-89-001.
- Porter, S.D., D. K. Mueller, N. E. Spahr, M. D. Munn and N. M. Dubrovsky. 2008. Efficacy of algal metrics for assessing nutrient and organic enrichment in flowing water. Freshwater Biology. 53, 1036-1054.
- Quinn, J.M. and C. W. Hickey. 1993. Effects of sewage waste stabilization lagoon effluent on stream invertebrates. Journal of Aquatic Ecosystem Health 2: 205-219.
- Rabeni C.F., Doisy K.E. and Zweig L.D., 2005. Stream invertebrate community functional responses to deposited sediment. Aquat. Sci., 67, 395–402.
- Redfield, A.C. 1958. The Biological Control of Chemical Factors in the Environment. American Scientist, 46, 205-221.

- Rehn, A.C., P.R. Ode, and J.T. May. 2005. Development of a benthic index of biotic integrity (B-IBI) for wadeable streams in Northern Coastal California and its application to regional 305(b) assessment. Final Technical Report, State Water Resources Control Board, Sacramento, CA.
- Rehn, A. C., P. R. Ode, and J. T. May. 2008. An index of biotic integrity (IBI) for perennial streams in California's Central Valley. Report to the State Water Resources Control Board.
- Rehn, A.C., R.D. Mazor and P.R. Ode. 2015. The California Stream Condition Index (CSCI): A New Statewide Biological Scoring Tool for Assessing the Health of Freshwater Streams. Swamp Technical Memorandum SWAMP-TM-2015-0002.
- Resh, V.H., R.H. Norris, and M.T. Barbour. 1995. Design and implementation of rapid assessment approaches for water resource monitoring using benthic macroinvertebrates. Australian Journal of Ecology 20:108-121.
- Reynoldson, T. B., R. H. Norris, V. H. Resh, K. E. Day, and D. M. Rosenberg. 1997. The reference condition: a comparison of multimetric and multivariate approaches to assess water-quality impairment using benthic macroinvertebrates. Journal of the North American Benthological Society 16:833–852.
- Rosenberg, D.M., I.J. Davies, D.G. Cobb, and A.P. Wiens. 1998. Protocols for Measuring Biodiversity: Benthic Macroinvertebrates in Fresh Waters. Department of Fisheries and Oceans, Freshwater Institute. Winnipeg, Manitoba.
- Rosenberg, D.M., and V.H. Resh. 1996. Use of aquatic insects in biomonitoring. R.W. Merritt and K.W. Cummins (editors). An introduction to the aquatic insects of North America. 3rd edition. Kendall/Hunt, Dubuque, Iowa.
- Stanley, E.H., S.M. Powers, and N.R. Lottig. 2010. The evolving legacy of disturbance in stream ecology: concepts, contributions, and coming challenges. Journal of North American Benthological Society 29(1): 67-83
- Stevenson, R.J. 1984. Epilithic and epipelic diatoms in the Sandusky River, with emphasis on species diversity and water pollution. Hydrobiologia 114:161-174
- Stevenson, R. J. 1998. Diatom indicators of stream and wetland stressors in a risk management framework. Environmental Monitoring and Assessment 51:107-118.
- Stevenson, R. J. and Y. Pan. 1999. Assessing ecological conditions in rivers and streams with diatoms. Pages 11-40 in E. F. Stoermer and J. P. Smol, editors. The Diatoms: Applications to the Environmental and Earth Sciences. Cambridge University Press, Cambridge, UK.
- Stoddard, J.L., D.P. Larsen, C.P. Hawkins, R.K. Johnson, and R. H. Norris. 2006. Setting Expectations for the Ecological Condition of Streams: The Concept of Reference Condition. Ecological Applications, 16(4): 1267–1276.

- Storey, A. W., D. H. D. Edward and P. Gazey, 1991. Surber and kick sampling: a comparison for the assessment of macroinvertebrate community structure in streams of south-western Australia. Hydrobiologia 211: 111–121.
- USEPA. 1975. The Integrity of Water. Proceedings of a Symposium. US Environmental Protection Agency. Office of Water and Hazardous Materials. Washington, DC Stock Number 055–001–01068–1, pp 1–230
- USEPA. 1990. Biological criteria: National program guidance for surface waters. Office of Water Regulation and Standards, Washington, DC. EPA-440/5-90-004.
- USEPA. 2000. Ambient water quality criteria recommendations information supporting the development of state and tribal nutrient criteria for rivers and streams in nutrient Ecoregion II. EPA-822-B-00-015. Office of Science and Technology, Office of Water, US Environmental Protection Agency. Washington, DC December.
- USEPA. 2005. Use of biological information to better define designated aquatic life uses in state and tribal water quality standards. Office of Water, Washington, DC. EPA-822-R-05-001.
- USEPA. 2011. A primer on using biological assessments to support water quality management. Office of Water, Washington, DC. EPA 810-R-11-01.
- USEPA. 2012. Water quality standards handbook, 2nd edition. Office of Water, Washington, DC. EPA-823-B-12-002. http://water.epa.gov/scitech/swguidance/standards/handbook/chapter07.cfm
- USEPA. 2013. The bioassessment program review: Assessing level of technical rigor to support water quality management. Office of Water, Washington, DC. EPA/820-R-13-001.
- USEPA. 2016. A Practitioner's Guide to the Biological Condition Gradient: A Framework to Describe Incremental Change in Aquatic Ecosystems. EPA-842-R-16-001. U.S. Environmental Protection Agency, Office of Water, Washington, DC. Available: https://www.epa.gov/sites/production/files/2016-02/documents/bcg-practioners-guide-report.pdf
- Vannote, R.L., G.W. Minshall, K.W. Cummins, J.R. Sedell, and C.E. Cushing. 1980. The River Continuum Concept. Can. J. Fish. Aquat. Sci. 37, 130–137.
- Wang, L., D.M. Robertson, and J.P. Garrison. 2007. Linkages Between Nutrients and Assemblages of Macroinvertebrates and Fish in Wadeable Streams: Implication to Nutrient Criteria Development. Environmental Management, 39: 194-212.
- Water Quality Interagency Workgroup (WQIW). 1999. Chapter 12: Stream macroinvertebrate protocol, Oregon plan for salmon and watersheds. Water Quality Monitoring Guide Book, Version 1.03. Water Quality Interagency Workgroup for the Oregon Plan.
- Weber, C.I. (editor). 1973. Biological field and laboratory methods for measuring the quality of surface water and effluents. U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, Ohio. EPA 670-4-73-001.

- Wilhm, J.L. and T.C. Doris. 1968. Biological parameters for water quality criteria. Bioscience 18:477-481.
- Zeuss, D., S. Brunzel, and R. Brandl. 2017. Environmental drivers of voltinism and body size in insect assemblages across Europe.

Appendix A

Professional Background and Qualifications

Dr. Noah Hume (*Ph.D., Civil and Environmental Engineering*) has over 25 years experience in aquatic sciences and engineering spanning ecology, water quality, water supply and treatment. Dr. Hume's areas of expertise include engineering, water quality management, wetlands ecology, limnology, and fisheries biology. Dr. Hume brings his technical expertise to a wide variety of interdisciplinary projects that emphasize physical and water quality impacts to aquatic species, including habitat assessments, created wetland projects, river restoration and fisheries programs, and a number of engineering design projects. Dr. Hume has also participated in the design and implementation of several constructed wetlands projects and has provided expertise for water quality and wildlife management of wetland projects ranging from Oregon to Newport Bay, CA.

AREAS OF EXPERTISE

- Wetlands and Aquatic Ecology
- Water Quality
- Fisheries Biology
- Civil and Environmental Engineering
- Mechanical Engineering
- Restoration Ecology

YEARS OF EXPERIENCE

At Stillwater: 15 years In Total: 25 years

EDUCATION & LICENSURE

Ph.D., Civil and Environmental Engineering, UC Berkeley, 2000
M.S., Civil and Environmental Engineering, UC Berkeley, 1989
B.S., Mechanical and Ocean Engineering, University of Rhode Island, 1985

Professional Engineer (Civil/ Mechanical), State of California (Licenses C45808, M28919)

PROFESSIONAL HISTORY

- Senior Scientist (since 2000), Stillwater Sciences.
- Lecturer (1994-2002), University Extension, UC Berkeley.
- Engineer (1989-1994), Kennedy/Jenks Consultants, San Francisco, CA.
- Environmental Scientist (1987-1988), Alameda County Public Works Agency, Hayward, CA.

SELECTED PROJECT EXPERIENCE

Clean Water Act, Section 401 Certification, Carmen-Smith Hydroelectric Project, McKenzie River, OR (*Client: Eugene Water and Electric Board*): Dr. Hume served as Project Manager and lead author in the preparation of a Section 401 Application to the Oregon Dept. of Environmental Quality to ensure that the continued operations of the Carmen-Smith Project will comply with the State of Oregon's water quality standards. The Certification process ensures that the Project will remain in compliance with all applicable state and federal water quality standards, including control measures for temperature, turbidity, and hazardous materials, as well as the adoption of a Project-wide Water Quality Management Plan.

Benthic Macroinvertebrate Studies, Tuolumne River, CA (*Client: Turlock and Modesto Irrigation Districts*): Dr. Hume served as lead scientist in the analysis of long-term BMI data collection efforts collected to assess water quality conditions and food resources to rearing salmonids in the Tuolumne River downstream of the Don Pedro Hydroelectric Project. Dr. Hume analyzed spatial and multi-year trends in BMI data on the basis of traditional indices, multi-metric approaches included in the CSBP and SWAMP protocols, as well as multi-metrics used to assess impacts downstream of hydroelectric projects.

Water Quality Assessments for Hydroelectric Project Relicensing, CA and OR $% \left({{\mathbf{P}_{\mathrm{A}}} \right)$

- Bucks Creek, CA (Client: Pacific Gas & Electric Company)
- Eel River & East Fork Russian River (Client: Pacific Gas & Electric Company)
- Feather River, CA (Client: South Fork Water and Power Agency)
- West Branch Feather River & Butte Creek, CA (Client: Pacific Gas & Electric Company)
- McCloud River & Pit River, CA (Client: Pacific Gas & Electric Company)
- McKenzie River, OR (Client: Eugene Water and Electric Board)
- Mokelumne River & Bear Creek, CA (Client: Pacific Gas & Electric Company)

- Mechanical Engineer (1986-1987), Gibbs & Cox, Inc., Marine Engineers, New York, New York.

SELECTED PUBLICATIONS

Hume, N., D. Riordan, D. McEwan, L. Chu, and S. Andrews. 2016. Restoration approaches and planning for the Prospect Island Tidal Habitat Restoration Project. Bay-Delta Science Conference 2016.

Orr, B, M. Keever, A. Merrill, N. Hume, J. Long, H. Green, and G. Darren. 2016. Restoration Design in the Sacramento-San Joaquin Delta – Lessons from Case Studies. Bay-Delta Science Conference 2016.

Hume., N., G. Leverich, S. Dusterhoff, D. Pfeifer, C. McCalvin, and L. Holmes. 2014. Balancing Habitat Needs for Rearing and Migratory Steelhead with Other Beneficial Water Uses in the Santa Clara River Estuary. 32nd Annual Salmonid Restoration Conference, Santa Barbara, CA.

Singer, M., N. Hume, D. Slotton, N. Bloom, J. Wood, and P. Downs. In prep. Mercury bioaccumulation potential versus avian habitat benefits in restoration design of a dredged and regulated river-floodplain in the Central Valley of California.

Hume, N., M. Fleming, and A. Horne 2002. Denitrification potential and carbon quality of four aquatic plants in wetland microcosms. Soil Science Society of America Journal 66: 1706– 1712.

Hume, N., M. Fleming, and A. Horne 2002. Plant carbohydrate limitation on nitrate reduction in wetland microcosms. Water Research 36: 577– 584 Dr. Hume served as Project Manager and lead scientist for numerous water quality and water temperature studies for FERC hydroelectric project relicensing. These studies led to mitigation, restoration and management strategies related to flow and temperature impacts of hydroelectric Project operations upon sensitive aquatic species.

Algae Monitoring and Mitigation Plan, San Francisco Regional Water

Supply System (*Client: San Francisco Public Utilities Commission*) Dr. Hume served as Project Manager and lead scientist in the review and update of an existing Algae Monitoring and Mitigation Plan (AMMP) for SFPUC. Extensive review of water quality data and operating procedures was undertaken in order to develop appropriate responses to altered water quality conditions and algae community composition in their water supply reservoirs. In addition to limnological analyses of seasonal water quality and algal species data, Stillwater reviewed recent in situ and remote sensing techniques for detecting algal blooms in their early stages. Stillwater reviewed current data at two of SFPUCs reservoirs that have been using hypolimnetic oxygenation to limit internal nutrient cycling. Based upon interviews with operations staff as well as other water utilities in the Western U.S., updated prevention and mitigation response recommendations were developed in collaboration with SFPUC, including modified HOS operations, selective withdrawal options, targeted use of algaecides, as well as potential reservoir amendments designed to limit nutrient supply to algae.

Don Pedro Reservoir Mercury Bioaccumulation Study, Tuolumne River, CA (*Client: Turlock and Modesto Irrigation Districts*): Dr. Hume served as lead scientist in a mercury bioaccumulation study of the Tuolumne River, CA. In response to State 303(d) listing of Don Pedro reservoir for mercury impairment, the study compared water quality and fish tissue concentrations in regional waterbodies to conditions upstream, within and downstream of the reservoir.

Mercury Methylation Investigations, Merced River Ranch Restoration Planning, CA (*Client: CALFED*): Dr. Hume served as project manager of a study related to methylation potential and bioaccumulation of residual mercury in mine tailings to evaluate suitability for salmon spawning gravel replenishment as well as gravel processing planning.

Soulajule Reservoir Mercury Bioaccumulation Study, Walker Creek, Marin County, CA (*Client: Marin Municipal Water District*): Dr. Hume is currently serving as project director of ongoing water quality and limnology studies for investigations intended to control methyl mercury bioaccumulation and production in Soulajule Reservoir and downstream locations in Walker Creek. The study is being carried out as part of the implementation plan for the Walker Creek watershed Mercury Total Maximum Daily Load (TMDL) and is focused on the protection of both wildlife and human consumptive resources.

EIS/EIR and Secretarial Determination Overview Report for Klamath River Dam Removal (*Client: US Bureau of Reclamation*): Dr. Hume provided technical support to a State and Federal water quality subteam for the Secretarial Determination process in evaluating the feasibility and potential impacts of the removal of four dams on the Klamath River. Primary technical analyses included evaluation of potential short-term sediment related impacts upon dissolved oxygen following dam removal, as well as longer term impacts in relation to the KHSA and KBRA implementation measures over a 50-year period.

Estuary Special Studies, Santa Clara River Estuary, CA (*Client: City of Ventura*): Dr. Hume has served as lead scientist on multiple phases of work in the assessment of ecological impacts of ongoing wastewater discharge into the Santa Clara River Estuary. Using an ecological functions and focal species approach, Dr. Hume used physical habitat and water quality data in conjunction with existing survey data documenting threatened and endangered species use of estuary habitats to examine current ecological functioning as well as in relation to future flows and likely climate change impacts.

Receiving Waters Monitoring Plan, Humboldt Bay CA (*Client: City of Arcata*): Dr. Hume served as technical reviewer for the development of a monitoring plan to address point source discharges from the City of Arcata wastewater treatment plant, as regulated under the National Pollutant Discharge Elimination System (NPDES). In addition to basic physical, chemical, and biological water quality constituents, the plan was developed to include specific consideration of the fate of copper, zinc, cyanide, and dioxin [2,3,7,8-TCDD] in Humboldt Bay.

Stormwater Treatment Wetland, Port of Sacramento, CA (*Client: Port of Sacramento*): Dr. Hume worked with Kennedy Jenks Consultants in the design and implementation of a stormwater treatment wetland for the Port of Sacramento. Dr. Hume reviewed historical monitoring data and projected stormwater flows to develop preliminary design sizing and design details. Following implementation, Dr. Hume has provided assistance to the Port in assessing wetland performance and ongoing operations.

The Trust for Public Land, Urban Orchard Project, City of South Gate, CA (*Client: City of South Gate*): Dr. Hume is part of a team designing a 30acre multi-benefit park and green infrastructure project along the Los Angeles River. The project objective is to restore former industrial land to a community park featuring an urban orchard, a treatment wetland, native habitat restoration, groundwater infiltration, and a study on naturalization of a flood control channel. Dr. Hume provided engineering review of design concepts as well as water quality assessment for the Urban Orchard project.

Wetlands Treatment Studies, Santa Clara River, CA (*Client: City of Ventura*): Dr. Hume provided design review and performance evaluation estimates of several opportunities for the development of on-site and off-site treatment wetlands as part of a long-term water management approach for treated effluent discharge to the Santa Clara River estuary.

John Muir Treatment Wetlands Design Assistance (*Client: San Francisco Public Utilities Commission, as subcontractor to Kennedy-Jenks Consultants*): Building upon preliminary removal estimates of bacteria, nutrients and metals from stormwater, Dr. Hume provided design assistance for the John Muir Wetland through refinement of previous pollutant removal estimates for stormwater and dry weather flows, and served as a liaison with the prime contractor and other Stillwater scientists. The project aimed to provide additional water supply to Lake Merced through the use of a stormwater treatment wetland. Pollutants considered include nitrogen, phosphorus, total suspended solids, metals (chromium, copper, nickel, lead, and zinc), and bacteria (total coliform, *Escherichia coli*). Appendix B

Statement of Fees

For work in reviewing existing information, conducting field work, assessment and report preparation, the following statement of fees is provided in Table B-1 below.

Description		Charge
Information Review		\$26,329
Field Work		\$16,363
Expenses and Lab		\$16,246
Assessment		\$52,142
	Total	\$108,311

Table B-1 Statement of Fees

In the event that my deposition is taken in this matter and/or I testify at trial, I will be compensated for that time as a Senior Scientist at the rate of \$325 per hour, plus expenses. Additional fees for support services are provided in Table B-2 below.

 Table B-2. 2019 Stillwater Sciences Expert Witness Billing Rates

Billing Classification	Hourly Rate
Administrative Support	\$90
Technical Support	\$150
Senior Scientist	\$325

Rates listed above are for calendar year 2019. These are applied for labor-hour level-of-effort contracts with reimbursement for expenses (including travel expenses) at cost plus 10%.

Appendix C

October 2018 Analytical Water Quality Data Reports

Client ID	Analysis	Analyte	Prepared	Analyzed	Results	DL	QL	Units	Dilution	CAS	Qual
R1	EPA 350.1	Nitrogen, Ammonia (As N)	10/12/2018	10/15/2018	0.155	0	0.2	mg/L	1.0	7727-37-9	
R1	EPA 353.2	Nitrate Nitrogen		10/10/2018	ND	0	0.1	mg/L	1.0	7727-37-9	
R1	SM 4500-P E	Phosphorus, Total (As P)	10/10/2018	10/10/2018	0.0738	0	0.0	mg/L	1.0	7723-14-0	
R1	EPA 351.2	Nitrogen, Kjeldahl, Total	10/23/2018	10/24/2018	0.34	0	0.6	mg/L	1.0	7727-37-9	J
R1	SM 4500-NO2-B	Nitrite Nitrogen		10/5/2018	ND	0	0.0	mg/L	1.0	7727-37-9	
R1	SM 4500-P E	Orthophosphate (As P)		10/5/2018	0.0267	0	0.0	mg/L	1.0	7723-14-0	
R3	EPA 350.1	Nitrogen, Ammonia (As N)	10/12/2018	10/15/2018	0.14	0	0.2	mg/L	1.0	7727-37-9	J
R3	EPA 353.2	Nitrate Nitrogen		10/10/2018	ND	0	0.1	mg/L	1.0	7727-37-9	
R3	SM 4500-P E	Phosphorus, Total (As P)	10/10/2018	10/10/2018	0.0623	0	0.0	mg/L	1.0	7723-14-0	
R3	EPA 351.2	Nitrogen, Kjeldahl, Total	10/23/2018	10/24/2018	0.30	0	0.6	mg/L	1.0	7727-37-9	J
R3	SM 4500-NO2-B	Nitrite Nitrogen		10/5/2018	ND	0	0.0	mg/L	1.0	7727-37-9	
R3	SM 4500-P E	Orthophosphate (As P)		10/5/2018	0.0283	0	0.0	mg/L	1.0	7723-14-0	
R4	EPA 350.1	Nitrogen, Ammonia (As N)	11/8/2018	11/9/2018	0.231	0	0.2	mg/L	1.0	7727-37-9	HP N
R4	EPA 353.2	Nitrate Nitrogen		10/10/2018	0.249	0	0.1	mg/L	1.0	7727-37-9	
R4	SM 4500-P E	Phosphorus, Total (As P)	10/10/2018	10/10/2018	0.131	0	0.0	mg/L	1.0	7723-14-0	
R4	EPA 351.2	Nitrogen, Kjeldahl, Total	11/13/2018	11/14/2018	0.46	0	0.6	mg/L	1.0	7727-37-9	HP N J
R4	SM 4500-NO2-B	Nitrite Nitrogen		10/5/2018	0.0434	0	0.0	mg/L	1.0	7727-37-9	
R4	SM 4500-P E	Orthophosphate (As P)		10/5/2018	0.0899	0	0.0	mg/L	1.0	7723-14-0	
R5	EPA 350.1	Nitrogen, Ammonia (As N)	10/12/2018	10/15/2018	0.184	0	0.2	mg/L	1.0	7727-37-9	
R5	EPA 353.2	Nitrate Nitrogen		10/10/2018	0.0757	0	0.1	mg/L	1.0	7727-37-9	
R5	SM 4500-P E	Phosphorus, Total (As P)	10/10/2018	10/10/2018	0.0886	0	0.0	mg/L	1.0	7723-14-0	
R5	EPA 351.2	Nitrogen, Kjeldahl, Total	10/23/2018	10/24/2018	0.42	0	0.6	mg/L	1.0	7727-37-9	J
R5	SM 4500-NO2-B	Nitrite Nitrogen		10/5/2018	0.0147	0	0.0	mg/L	1.0	7727-37-9	
R5	SM 4500-P E	Orthophosphate (As P)		10/5/2018	0.0599	0	0.0	mg/L	1.0	7723-14-0	
R6	EPA 350.1	Nitrogen, Ammonia (As N)	10/12/2018	10/15/2018	0.313	0	0.2	mg/L	1.0	7727-37-9	
R6	EPA 353.2	Nitrate Nitrogen		10/10/2018	0.180	0	0.1	mg/L	1.0	7727-37-9	
R6	SM 4500-P E	Phosphorus, Total (As P)	10/11/2018	10/11/2018	0.114	0	0.0	mg/L	1.0	7723-14-0	
R6	EPA 351.2	Nitrogen, Kjeldahl, Total	10/23/2018	10/24/2018	0.44	0	0.6	mg/L	1.0	7727-37-9	J
R6	SM 4500-NO2-B	Nitrite Nitrogen		10/5/2018	0.0317	0	0.0	mg/L	1.0	7727-37-9	
R6	SM 4500-P E	Orthophosphate (As P)		10/5/2018	0.0849	0	0.0	mg/L	1.0	7723-14-0	
R7	EPA 350.1	Nitrogen, Ammonia (As N)	10/12/2018	10/15/2018	0.217	0	0.2	mg/L	1.0	7727-37-9	
R7	EPA 353.2	Nitrate Nitrogen		10/10/2018	0.280	0	0.1	mg/L	1.0	7727-37-9	
R7	SM 4500-P E	Phosphorus, Total (As P)	10/11/2018	10/11/2018	0.122	0	0.0	mg/L	1.0	7723-14-0	
R7	EPA 351.2	Nitrogen, Kjeldahl, Total	10/23/2018	10/24/2018	0.41	0	0.6	mg/L	1.0	7727-37-9	J
R7	SM 4500-NO2-B	Nitrite Nitrogen		10/5/2018	0.0324	0	0.0	mg/L	1.0	7727-37-9	
R7	SM 4500-P E	Orthophosphate (As P)		10/5/2018	0.0865	0	0.0	mg/L	1.0	7723-14-0	
EB	EPA 350.1	Nitrogen, Ammonia (As N)	11/8/2018	11/9/2018	ND	0	0.2	mg/L	1.0	7727-37-9	HP N
EB	EPA 353.2	Nitrate Nitrogen		10/10/2018	ND	0	0.1	mg/L	1.0	7727-37-9	
EB	SM 4500-P E	Phosphorus, Total (As P)	10/11/2018	10/11/2018	ND	0	0.0	mg/L	1.0	7723-14-0	
EB	EPA 351.2	Nitrogen, Kjeldahl, Total	11/13/2018	11/14/2018	ND	0	0.6	mg/L	1.0	7727-37-9	HP N

Client ID	Analysis	Analyte	Prepared	Analyzed	Results	DL	QL	Units	Dilution	CAS	Qual
EB	SM 4500-NO2-B	Nitrite Nitrogen		10/5/2018	ND	0	0.0	mg/L	1.0	7727-37-9	
EB	SM 4500-P E	Orthophosphate (As P)		10/5/2018	ND	0	0.0	mg/L	1.0	7723-14-0	
R4B	EPA 350.1	Nitrogen, Ammonia (As N)	11/8/2018	11/9/2018	0.205	0	0.2	mg/L	1.0	7727-37-9	HP N
R4B	EPA 353.2	Nitrate Nitrogen		10/10/2018	0.244	0	0.1	mg/L	1.0	7727-37-9	
R4B	SM 4500-P E	Phosphorus, Total (As P)	10/11/2018	10/11/2018	0.254	0	0.0	mg/L	1.0	7723-14-0	
R4B	EPA 351.2	Nitrogen, Kjeldahl, Total	11/13/2018	11/14/2018	0.700	0	0.6	mg/L	1.0	7727-37-9	HP N
R4B	SM 4500-NO2-B	Nitrite Nitrogen		10/5/2018	0.0351	0	0.0	mg/L	1.0	7727-37-9	
R4B	SM 4500-P E	Orthophosphate (As P)		10/5/2018	0.102	0	0.0	mg/L	1.0	7723-14-0	
R2	EPA 350.1	Nitrogen, Ammonia (As N)	10/10/2018	10/11/2018	0.11	0	0.2	mg/L	1.0	7727-37-9	J
R2	EPA 353.2	Nitrate Nitrogen		10/8/2018	ND	0	0.1	mg/L	1.0	7727-37-9	
R2	SM 4500-P E	Phosphorus, Total (As P)	10/8/2018	10/8/2018	0.0820	0	0.0	mg/L	1.0	7723-14-0	
R2	EPA 351.2	Nitrogen, Kjeldahl, Total	10/23/2018	10/24/2018	0.24	0	0.6	mg/L	1.0	7727-37-9	J
R2	SM 4500-NO2-B	Nitrite Nitrogen		10/4/2018	ND	0	0.0	mg/L	1.0	7727-37-9	
R2	SM 4500-P E	Orthophosphate (As P)		10/4/2018	0.0367	0	0.0	mg/L	1.0	7723-14-0	
245 South Grape Street, Medford, Oregon 97501 541-770-5678 Fax 541-770-2901

ORELAP 10001 EPA OR0002 Analysis Report **Stillwater Sciences** Lab Order: 1810273 2855 Telegraph Ave., Suite 400 NRC Sample ID 1810273-01A Berkeley, CA 94704 Collection Date: 10/4/2018 10:54:00 AM Client Sample ID: R1 Received Date: 10/5/2018 8:44:00 AM Reported Date: 11/16/2018 9:56:14 AM Sample Location: Grab Project: Medford WWTP 821-AMENDED Matrix: Aqueous

ANALYTICAL RESULTS

Analyses	Result	Qual	MDL	MRL	Units	DF	NELAI	P Date Analyzed
AMMONIA NITROGEN AS N Nitrogen, Ammonia (As N)	0.155	EF	PA 350.1 0.105	0.15	mg/L	1	A	Analyst: SJK 10/15/2018
NITRATE NITROGEN AS N Nitrate Nitrogen	ND	EP	PA 353.2 0.0118	0.05	mg/L	1	A	Analyst: SJK 10/10/2018
TOTAL PHOSPHORUS AS P Phosphorus, Total (As P)	0.0738	SM	4500-P E 0.00600	0.025	mg/L	1	A	Analyst: SCM 10/10/2018
TOTAL KJELDAHL NITROGEN Nitrogen, Kjeldahl, Total	0.34	EF J	PA 351.2 0.238	0.625	mg/L	1	A	Analyst: SJK 10/24/2018

Qualifiers:

* Value exceeds Maximum Contaminant Level

Е Value above quantitation range J

Analyte detected below quantitation limits S

Spike Recovery outside accepted recovery limits

В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

245 South Grape Street, Medford, Oregon 97501 541-770-5678 Fax 541-770-2901

Analysis ReportORELAP 100016
EPA 0R00028Stillwater SciencesLab Order: 18102732855 Telegraph Ave., Suite 400NRC Sample ID 1810273-01BBerkeley, CA 94704Collection Date: 10/4/2018 10:54:00 AMClient Sample ID: R1Received Date: 10/5/2018 8:44:00 AMSample Location: GrabReported Date: 11/16/2018 9:56:14 AMProject: Medford WWTP 821-AMENDEDMatrix: Aqueous

ANALYTICAL RESULTS

Analyses	Result	Qual	MDL	MRL	Units	DF	NELAF	P Date Analyzed
NITRITE NITROGEN AS N		SM 45	500-NO2-B					Analyst: SCM
Nitrite Nitrogen	ND		0.00116	0.01	mg/L	1	A	10/5/2018 11:00
ORTHOPHOSPHATE AS P Orthophosphate (As P)	0.0267	SM	4500-P E 0.00290	0.025	mg/L	1	A	Analyst: SCM 10/5/2018 12:28

Qualifiers:

* Value exceeds Maximum Contaminant Level

E Value above quantitation rangeJ Analyte detected below quantitat

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

245 South Grape Street, Medford, Oregon 97501 541-770-5678 Fax 541-770-2901

ORELAP 10001 EPA OR0002 Analysis Report **Stillwater Sciences** Lab Order: 1810273 2855 Telegraph Ave., Suite 400 NRC Sample ID 1810273-02A Berkeley, CA 94704 Collection Date: 10/4/2018 11:00:00 AM Client Sample ID: R3 Received Date: 10/5/2018 8:44:00 AM Reported Date: 11/16/2018 9:56:14 AM Sample Location: Grab Project: Medford WWTP 821-AMENDED Matrix: Aqueous

ANALYTICAL RESULTS

Analyses	Result	Qual	MDL	MRL	Units	DF	NELA	P Date Analyzed
AMMONIA NITROGEN AS N		E	PA 350.1	0.45				Analyst: SJK
Nitrogen, Ammonia (As N)	0.14	J	0.105	0.15	mg/L	1	A	10/15/2018
NITRATE NITROGEN AS N		EI	PA 353.2					Analyst: SJK
Nitrate Nitrogen	ND		0.0118	0.05	mg/L	1	А	10/10/2018
TOTAL PHOSPHORUS AS P		SM	4500-P E					Analyst: SCM
Phosphorus, Total (As P)	0.0623		0.00600	0.025	mg/L	1	А	10/10/2018
TOTAL KJELDAHL NITROGEN		EI	PA 351.2					Analyst: SJK
Nitrogen, Kjeldahl, Total	0.30	J	0.238	0.625	mg/L	1	А	10/24/2018

Qualifiers:

* Value exceeds Maximum Contaminant Level

Е Value above quantitation range J

Analyte detected below quantitation limits S

Spike Recovery outside accepted recovery limits

В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

245 South Grape Street, Medford, Oregon 97501 541-770-5678 Fax 541-770-2901

Analysis ReportORELAP 100016
EPA 0R00028Stillwater SciencesLab Order: 18102732855 Telegraph Ave., Suite 400NRC Sample ID 1810273-02BBerkeley, CA 94704Collection Date: 10/4/2018 11:00:00 AMClient Sample ID: R3Received Date: 10/5/2018 8:44:00 AMSample Location: GrabReported Date: 11/16/2018 9:56:14 AMProject: Medford WWTP 821-AMENDEDMatrix: Aqueous

ANALYTICAL RESULTS

Analyses	Result	Qual	MDL	MRL	Units	DF	NELAF	Date Analyzed
NITRITE NITROGEN AS N		SM 45	00-NO2-B					Analyst: SCM
Nitrite Nitrogen	ND		0.00116	0.01	mg/L	1	A	10/5/2018 11:00
ORTHOPHOSPHATE AS P Orthophosphate (As P)	0.0283	SM 4	4500-P E 0.00290	0.025	mg/L	1	A	Analyst: SCM 10/5/2018 12:28

Qualifiers:

* Value exceeds Maximum Contaminant Level

E Value above quantitation rangeJ Analyte detected below quantitat

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

245 South Grape Street, Medford, Oregon 97501 541-770-5678 Fax 541-770-2901

ORELAP 10001 EPA OR0002 Analysis Report **Stillwater Sciences** Lab Order: 1810273 2855 Telegraph Ave., Suite 400 NRC Sample ID 1810273-03A Berkeley, CA 94704 Collection Date: 10/4/2018 11:41:00 AM Client Sample ID: R4 Received Date: 10/5/2018 8:44:00 AM Reported Date: 11/16/2018 9:56:14 AM Sample Location: Grab Project: Medford WWTP 821-AMENDED Matrix: Aqueous

ANALYTICAL RESULTS

Analyses	Result	Qual	MDL	MRL	Units	DF	NELAF	P Date Analyzed
AMMONIA NITROGEN AS N Nitrogen, Ammonia (As N)	0.231	EF HP N	PA 350.1 0.105	0.15	mg/L	1	A	Analyst: SJK 11/9/2018
NITRATE NITROGEN AS N Nitrate Nitrogen	0.249	EF	PA 353.2 0.0118	0.05	mg/L	1	A	Analyst: SJK 10/10/2018
TOTAL PHOSPHORUS AS P Phosphorus, Total (As P)	0.131	SM	4500-P E 0.00600	0.025	mg/L	1	A	Analyst: SCM 10/10/2018
TOTAL KJELDAHL NITROGEN Nitrogen, Kjeldahl, Total	0.46	EF HP N J	PA 351.2 0.238	0.625	mg/L	1	A	Analyst: SJK 11/14/2018

Qualifiers:

*

Value exceeds Maximum Contaminant Level

Е Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

245 South Grape Street, Medford, Oregon 97501 541-770-5678 Fax 541-770-2901

ORELAP 1000 EPA OR000 Analysis Report **Stillwater Sciences** Lab Order: 1810273 2855 Telegraph Ave., Suite 400 NRC Sample ID 1810273-03B Berkeley, CA 94704 Collection Date: 10/4/2018 11:41:00 AM Client Sample ID: R4 Received Date: 10/5/2018 8:44:00 AM Reported Date: 11/16/2018 9:56:14 AM Sample Location: Grab Project: Medford WWTP 821-AMENDED Matrix: Aqueous

ANALYTICAL RESULTS

Analyses	Result	Qual MI	DL MRL	Units	DF	NELAI	P Date Analyzed
NITRITE NITROGEN AS N		SM 4500-N	D2-B				Analyst: SCM
Nitrite Nitrogen	0.0434	0.00	0.01 0.01	mg/L	1	А	10/5/2018 11:00
ORTHOPHOSPHATE AS P		SM 4500-I	PE				Analyst: SCM
Orthophosphate (As P)	0.0899	0.00	0.025 0.025	mg/L	1	A	10/5/2018 12:28

Qualifiers:

* Value exceeds Maximum Contaminant Level

Е Value above quantitation range J

Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

245 South Grape Street, Medford, Oregon 97501 541-770-5678 Fax 541-770-2901

ORELAP 1000 EPA OR000 Analysis Report **Stillwater Sciences** Lab Order: 1810273 2855 Telegraph Ave., Suite 400 NRC Sample ID 1810273-04A Berkeley, CA 94704 Collection Date: 10/4/2018 3:15:00 PM Client Sample ID: R5 Received Date: 10/5/2018 8:44:00 AM Reported Date: 11/16/2018 9:56:14 AM Sample Location: Grab Project: Medford WWTP 821-AMENDED Matrix: Aqueous

ANALYTICAL RESULTS

Analyses	Result	Qual	MDL	MRL	Units	DF	NELAI	P Date Analyzed
AMMONIA NITROGEN AS N Nitrogen, Ammonia (As N)	0.184	E	PA 350.1 0.105	0.15	mg/L	1	A	Analyst: SJK 10/15/2018
NITRATE NITROGEN AS N Nitrate Nitrogen	0.0757	EI	PA 353.2 0.0118	0.05	mg/L	1	A	Analyst: SJK 10/10/2018
TOTAL PHOSPHORUS AS P Phosphorus, Total (As P)	0.0886	SM	4500-P E 0.00600	0.025	mg/L	1	A	Analyst: SCM 10/10/2018
TOTAL KJELDAHL NITROGEN Nitrogen, Kjeldahl, Total	0.42	J J	PA 351.2 0.238	0.625	mg/L	1	A	Analyst: SJK 10/24/2018

Qualifiers:

* Value exceeds Maximum Contaminant Level

Е Value above quantitation range J

Analyte detected below quantitation limits S

Spike Recovery outside accepted recovery limits

В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

245 South Grape Street, Medford, Oregon 97501 541-770-5678 Fax 541-770-2901

ORELAP 1000 EPA OR000 Analysis Report **Stillwater Sciences** Lab Order: 1810273 2855 Telegraph Ave., Suite 400 NRC Sample ID 1810273-04B Berkeley, CA 94704 Collection Date: 10/4/2018 3:15:00 PM Client Sample ID: R5 Received Date: 10/5/2018 8:44:00 AM Reported Date: 11/16/2018 9:56:14 AM Sample Location: Grab Project: Medford WWTP 821-AMENDED Matrix: Aqueous

ANALYTICAL RESULTS

Analyses	Result	Qual	MDL	MRL	Units	DF	NELAF	Date Analyzed
NITRITE NITROGEN AS N	0.04.47	SM 45	00-NO2-B	0.01		4		Analyst: SCM
Nitrite Nitrogen	0.0147		0.00116	0.01	mg/L	1	A	10/5/2018 11:00
ORTHOPHOSPHATE AS P		SM 4	4500-P E					Analyst: SCM
Orthophosphate (As P)	0.0599		0.00290	0.025	mg/L	1	А	10/5/2018 12:28

Qualifiers:

* Value exceeds Maximum Contaminant Level

Е Value above quantitation range J

Analyte detected below quantitation limits S Spike Recovery outside accepted recovery limits В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

245 South Grape Street, Medford, Oregon 97501 541-770-5678 Fax 541-770-2901

ORELAP 10001 EPA OR0002 Analysis Report **Stillwater Sciences** Lab Order: 1810273 2855 Telegraph Ave., Suite 400 NRC Sample ID 1810273-05A Berkeley, CA 94704 Collection Date: 10/4/2018 4:00:00 PM Client Sample ID: R6 Received Date: 10/5/2018 8:44:00 AM Reported Date: 11/16/2018 9:56:14 AM Sample Location: Grab Project: Medford WWTP 821-AMENDED Matrix: Aqueous

ANALYTICAL RESULTS

Analyses	Result	Qual	MDL	MRL	Units	DF	NELAI	P Date Analyzed
AMMONIA NITROGEN AS N Nitrogen, Ammonia (As N)	0.313	EF	PA 350.1 0.105	0.15	mg/L	1	A	Analyst: SJK 10/15/2018
NITRATE NITROGEN AS N Nitrate Nitrogen	0.180	EF	PA 353.2 0.0118	0.05	mg/L	1	A	Analyst: SJK 10/10/2018
TOTAL PHOSPHORUS AS P Phosphorus, Total (As P)	0.114	SM	4500-P E 0.00600	0.025	mg/L	1	A	Analyst: EAT 10/11/2018
TOTAL KJELDAHL NITROGEN Nitrogen, Kjeldahl, Total	0.44	J J	PA 351.2 0.238	0.625	mg/L	1	A	Analyst: SJK 10/24/2018

Qualifiers:

*

Value exceeds Maximum Contaminant Level

Е Value above quantitation range J

Analyte detected below quantitation limits S

Spike Recovery outside accepted recovery limits

В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

245 South Grape Street, Medford, Oregon 97501 541-770-5678 Fax 541-770-2901

ORELAP 10001 EPA OR0002 Analysis Report **Stillwater Sciences** Lab Order: 1810273 2855 Telegraph Ave., Suite 400 NRC Sample ID 1810273-05B Berkeley, CA 94704 Collection Date: 10/4/2018 4:00:00 PM Client Sample ID: R6 Received Date: 10/5/2018 8:44:00 AM Reported Date: 11/16/2018 9:56:14 AM Sample Location: Grab Project: Medford WWTP 821-AMENDED Matrix: Aqueous

ANALYTICAL RESULTS

Analyses	Result	Qual MDL	MRL	Units	DF	NELAF	Date Analyzed
NITRITE NITROGEN AS N		SM 4500-NO2-B					Analyst: SCM
Nitrite Nitrogen	0.0317	0.00116	0.01	mg/L	1	А	10/5/2018 11:0(
ORTHOPHOSPHATE AS P		SM 4500-P E					Analyst: SCM
Orthophosphate (As P)	0.0849	0.00290	0.025	mg/L	1	А	10/5/2018 12:28

Qualifiers:

* Value exceeds Maximum Contaminant Level

Е Value above quantitation range J

Analyte detected below quantitation limits S

Spike Recovery outside accepted recovery limits

В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

245 South Grape Street, Medford, Oregon 97501 541-770-5678 Fax 541-770-2901

Analysis ReportORELAP 100016
EPA 0R00028Stillwater SciencesLab Order: 18102732855 Telegraph Ave., Suite 400NRC Sample ID 1810273-06ABerkeley, CA 94704Collection Date: 10/4/2018 3:30:00 PMClient Sample ID: R7Received Date: 10/5/2018 8:44:00 AMSample Location: GrabReported Date: 11/16/2018 9:56:14 AMProject: Medford WWTP 821-AMENDEDMatrix: Aqueous

ANALYTICAL RESULTS

Analyses	Result	Qual	MDL	MRL	Units	DF	NELAI	P Date Analyzed
AMMONIA NITROGEN AS N Nitrogen, Ammonia (As N)	0.217	EF	PA 350.1 0.105	0.15	mg/L	1	A	Analyst: SJK 10/15/2018
NITRATE NITROGEN AS N Nitrate Nitrogen	0.280	EF	PA 353.2 0.0118	0.05	mg/L	1	A	Analyst: SJK 10/10/2018
TOTAL PHOSPHORUS AS P Phosphorus, Total (As P)	0.122	SM	4500-P E 0.00600	0.025	mg/L	1	A	Analyst: EAT 10/11/2018
TOTAL KJELDAHL NITROGEN Nitrogen, Kjeldahl, Total	0.41	J J	PA 351.2 0.238	0.625	mg/L	1	A	Analyst: SJK 10/24/2018

Qualifiers:

*

Value exceeds Maximum Contaminant Level

E Value above quantitation rangeJ Analyte detected below quantitat

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

245 South Grape Street, Medford, Oregon 97501 541-770-5678 Fax 541-770-2901

ORELAP 1000 EPA OR000 Analysis Report **Stillwater Sciences** Lab Order: 1810273 2855 Telegraph Ave., Suite 400 NRC Sample ID 1810273-06B Berkeley, CA 94704 Collection Date: 10/4/2018 3:30:00 PM Client Sample ID: R7 Received Date: 10/5/2018 8:44:00 AM Reported Date: 11/16/2018 9:56:14 AM Sample Location: Grab Project: Medford WWTP 821-AMENDED Matrix: Aqueous

ANALYTICAL RESULTS

Analyses	Result	Qual MDI	L MRL	Units	DF	NELAF	Date Analyzed
NITRITE NITROGEN AS N		SM 4500-NO	2-В				Analyst: SCM
Nitrite Nitrogen	0.0324	0.001	16 0.01	mg/L	1	A	10/5/2018 11:0(
ORTHOPHOSPHATE AS P		SM 4500-P	E				Analyst: SCM
Orthophosphate (As P)	0.0865	0.002	.90 0.025	mg/L	1	А	10/5/2018 12:28

Qualifiers:

* Value exceeds Maximum Contaminant Level

Е Value above quantitation range J

Analyte detected below quantitation limits S

Spike Recovery outside accepted recovery limits

В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

245 South Grape Street, Medford, Oregon 97501 541-770-5678 Fax 541-770-2901

ORELAP 10001 EPA OR0002 Analysis Report **Stillwater Sciences** Lab Order: 1810273 2855 Telegraph Ave., Suite 400 NRC Sample ID 1810273-07A Berkeley, CA 94704 Collection Date: 10/4/2018 4:05:00 PM Client Sample ID: EB Received Date: 10/5/2018 8:44:00 AM Reported Date: 11/16/2018 9:56:14 AM Sample Location: Grab Project: Medford WWTP 821-AMENDED Matrix: Aqueous

ANALYTICAL RESULTS

Analyses	Result	Qual	MDL	MRL	Units	DF	NELAI	P Date Analyzed
AMMONIA NITROGEN AS N Nitrogen, Ammonia (As N)	ND	EF HP N	PA 350.1 0.105	0.15	mg/L	1	A	Analyst: SJK 11/9/2018
NITRATE NITROGEN AS N Nitrate Nitrogen	ND	EF	PA 353.2 0.0118	0.05	mg/L	1	A	Analyst: SJK 10/10/2018
TOTAL PHOSPHORUS AS P Phosphorus, Total (As P)	ND	SM	4500-P E 0.00600	0.025	mg/L	1	A	Analyst: EAT 10/11/2018
TOTAL KJELDAHL NITROGEN Nitrogen, Kjeldahl, Total	ND	EF HP N	PA 351.2 0.238	0.625	mg/L	1	A	Analyst: SJK 11/14/2018

Qualifiers:

*

Value exceeds Maximum Contaminant Level

Е Value above quantitation range J

Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

245 South Grape Street, Medford, Oregon 97501 541-770-5678 Fax 541-770-2901

ORELAP 1000 EPA OR000 Analysis Report **Stillwater Sciences** Lab Order: 1810273 2855 Telegraph Ave., Suite 400 NRC Sample ID 1810273-07B Berkeley, CA 94704 Collection Date: 10/4/2018 4:05:00 PM Client Sample ID: EB Received Date: 10/5/2018 8:44:00 AM Reported Date: 11/16/2018 9:56:14 AM Sample Location: Grab Project: Medford WWTP 821-AMENDED Matrix: Aqueous

ANALYTICAL RESULTS

Analyses	Result	Qual	MDL	MRL	Units	DF	NELAP	Date Analyzed
NITRITE NITROGEN AS N		SM 450	0-NO2-B					Analyst: SCM
Nitrite Nitrogen	ND		0.00116	0.01	mg/L	1	A	10/5/2018 11:0(
ORTHOPHOSPHATE AS P		SM 45	00-P E					Analyst: SCM
Orthophosphate (As P)	ND		0.00290	0.025	mg/L	1	А	10/5/2018 12:28

Qualifiers:

* Value exceeds Maximum Contaminant Level

Е Value above quantitation range J

Analyte detected below quantitation limits S

Spike Recovery outside accepted recovery limits

В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

245 South Grape Street, Medford, Oregon 97501 541-770-5678 Fax 541-770-2901

ORELAP 10001 EPA OR0002 Analysis Report **Stillwater Sciences** Lab Order: 1810273 2855 Telegraph Ave., Suite 400 NRC Sample ID 1810273-08A Berkeley, CA 94704 Collection Date: 10/4/2018 11:51:00 AM Client Sample ID: R4B Received Date: 10/5/2018 8:44:00 AM Reported Date: 11/16/2018 9:56:14 AM Sample Location: Grab Project: Medford WWTP 821-AMENDED Matrix: Aqueous

ANALYTICAL RESULTS

Analyses	Result	Qual	MDL	MRL	Units	DF	NELAI	P Date Analyzed
AMMONIA NITROGEN AS N Nitrogen, Ammonia (As N)	0.205	EF HP N	PA 350.1 0.105	0.15	mg/L	1	A	Analyst: SJK 11/9/2018
NITRATE NITROGEN AS N Nitrate Nitrogen	0.244	EF	PA 353.2 0.0118	0.05	mg/L	1	A	Analyst: SJK 10/10/2018
TOTAL PHOSPHORUS AS P Phosphorus, Total (As P)	0.254	SM	4500-P E 0.00600	0.025	mg/L	1	A	Analyst: EAT 10/11/2018
TOTAL KJELDAHL NITROGEN Nitrogen, Kjeldahl, Total	0.700	EF HP N	PA 351.2 0.238	0.625	mg/L	1	A	Analyst: SJK 11/14/2018

Qualifiers:

*

Value exceeds Maximum Contaminant Level

Е Value above quantitation range J

Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

245 South Grape Street, Medford, Oregon 97501 541-770-5678 Fax 541-770-2901

ORELAP 10001 EPA OR0002 Analysis Report **Stillwater Sciences** Lab Order: 1810273 2855 Telegraph Ave., Suite 400 NRC Sample ID 1810273-08B Berkeley, CA 94704 Collection Date: 10/4/2018 11:51:00 AM Client Sample ID: R4B Received Date: 10/5/2018 8:44:00 AM Reported Date: 11/16/2018 9:56:14 AM Sample Location: Grab Project: Medford WWTP 821-AMENDED Matrix: Aqueous

ANALYTICAL RESULTS

Analyses	Result	Qual MDL	MRL	Units	DF	NELAP	Date Analyzed
NITRITE NITROGEN AS N		SM 4500-NO2-B					Analyst: SCM
Nitrite Nitrogen	0.0351	0.00116	0.01	mg/L	1	А	10/5/2018 11:0(
ORTHOPHOSPHATE AS P	0.102	SM 4500-P E	0.025	~~~~/l	4	٨	Analyst: SCM
Orthophosphate (AS P)	0.102	0.00290	0.025	mg/∟	1	A	10/5/2018 12:28

Qualifiers:

* Value exceeds Maximum Contaminant Level

Е Value above quantitation range J

Analyte detected below quantitation limits S

Spike Recovery outside accepted recovery limits

В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

DATA FLAGS

- B Analyte detected in the associated method blank.
- BA BOD Alternative Calculation: The initial results performed by Standard Methods did not fall within parameters of the Standard Methods calculation. An alternate approved calculation was performed using the HACH method and the value reported is an estimated concentration.
- C Sample(s) does not meet NELAP/ORELAP sample acceptance criteria. See Case Narrative.
- C1 Sample(s) does not meet NELAP/ORELAP sample acceptance criteria for temperature.
- CF Results confirmed by re-analysis.
- CU Cleanup performed as specified by method.
- D1 The diesel elution pattern for the sample is not typical.
- D2 The sample appears to be a heavier hydrocarbon range than diesel.
- D3 The sample appears to be a lighter hydrocarbon range than diesel.
- D4 Detected hydrocarbons do not have pattern and range consistent with typical petroleum products and may be due to biogenic interference.
- D5 Detected hydrocarbons in the diesel range appear to be weathered diesel.
- E Estimated value.
- ER Elevated reporting limit due to matrix. Report limits (MDLs, MRLs & PQLs) are adjusted based on variations in sample preparation amounts, analytical dilutions, and percent solids, where applicable.
- FC Fecal Coliforms: Sample(s) received past 40 CFR Part 136 specified holding time. Results reported as estimated values.
- G1 The gasoline elution pattern for the sample is not typical.
- G2 The sample appears to be a heavier hydrocarbon range than gasoline.
- G3 The sample appears to be a lighter hydrocarbon range than gasoline.
- G4 Detected hydrocarbons in the gasoline range appear to be weathered gasoline.
- HP Sample re-analysis performed outside of method specified holding time.
- HR Sample received outside of method specified holding time.
- HS Sample analyzed for volatile organics contained headspace.
- HT At the client's request, the sample was analyzed outside of method specified holding time.
- H Analysis performed outside of method specified holding time.
- J Analyte detected below the Minimum Reporting Limit (MRL) and above the Method Detection Limit (MDL). The J flag result is an estimated value and the user should be aware that this data is of limited reliability.
- L Dissolved metals were not filtered within 15 minutes of collection per 40 CFR Part 136.
- MI Surrogate or Matrix Spike recovery is out of control limits due to matrix interference. Sample results may be biased.
 N See Case Narrative on page 2 of report.
- NLR No Legionella Recovered.
- PLR Presence of Legionella Recovered.
- Closing continuing calibration verification (CCV) or laboratory control sample (LCS) exceeded high recovery limits, but associated samples are non-detect and the sample results are not affected. Data meets EPA/NELAP requirements.
- R Relative percent difference (RPD) is outside of the accepted recovery limits.
- R1 Relative percent difference (RPD) is outside of the accepted recovery limits. However, analyses are not controlled on RPD values for sample concentrations that are less than the reporting limit.
- R3 The relative percent difference (RPD) and/or percent recovery for the duplicate (DUP) or matrix spike (MS)/matrix spike duplicate (MSD) cannot be accurately calculated due to the concentration of analyte already present in the sample.
- R4 Duplicate analysis failed due to result being at or near method reporting limit.
- S Surrogate and/or matrix spike recovery is outside of the accepted recovery limits. Sample results may be biased.
- S1 Surrogate or matrix spike recovery is outside of control limits due to dilution necessary for analysis.
- SC Sub-contracted to another laboratory for analysis.
- SP Sample(s) were not collected per EPA Method 5035A protocols. The results are considered minimum values.
- T Toxicity Characteristic Leaching Procedure Sample submitted contained < 0.5% solids. If the waste contains <0.5% dry solids, the liquid portion of the waste, after filtration, is defined as the TCLP extract.
- # Value exceeds regulatory level for TCLP contaminant.
- X1 The motor oil elution pattern for the sample is not typical.
- X2 The sample appears to be a heavier hydrocarbon range than motor oil.
- X3 The sample appears to be a lighter hydrocarbon range than motor oil.
- * Value exceeds Maximum Contaminant Level or is outside the acceptable range.

CLIENT:Stillwater SciencesWork Order:1810273

Project: Medford WWTP 821-AMENDED

ANALYTICAL QC SUMMARY REPORT

TestCode: AMMONIA_AUTO_W

Sample ID MB-42657	SampType: MBLK	TestCode: AMMONIA_A Units: mg/L	Prep Date: 10/12/2018	RunNo: 107323
Client ID: ZZZZZ	Batch ID: 42657	TestNo: EPA 350.1 (EPA 350.1)	Analysis Date: 10/15/2018	SeqNo: 1634560
Analyte	Result	MRL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Nitrogen, Ammonia (As N)	0.1460	0.150		J
Sample ID MB-42876	SampType: MBLK	TestCode: AMMONIA_A Units: mg/L	Prep Date: 11/8/2018	RunNo: 107936
Client ID: ZZZZZ	Batch ID: 42876	TestNo: EPA 350.1 (EPA 350.1)	Analysis Date: 11/9/2018	SeqNo: 1644857
Analyte	Result	MRL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Nitrogen, Ammonia (As N)	0.1490	0.150		J
Sample ID LCS-42657	SampType: LCS	TestCode: AMMONIA_A Units: mg/L	Prep Date: 10/12/2018	RunNo: 107323
Client ID: ZZZZZ	Batch ID: 42657	TestNo: EPA 350.1 (EPA 350.1)	Analysis Date: 10/15/2018	SeqNo: 1634559
Analyte	Result	MRL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Nitrogen, Ammonia (As N)	1.692	0.150 1.645 0	103 90 110	
Sample ID LCS-42876	SampType: LCS	TestCode: AMMONIA_A Units: mg/L	Prep Date: 11/8/2018	RunNo: 107936
Client ID: ZZZZZ	Batch ID: 42876	TestNo: EPA 350.1 (EPA 350.1)	Analysis Date: 11/9/2018	SeqNo: 1644856
Analyte	Result	MRL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Nitrogen, Ammonia (As N)	1.569	0.150 1.645 0	95.4 90 110	
Sample ID 1810273-01AMS	SampType: MS	TestCode: AMMONIA_A Units: mg/L	Prep Date: 10/12/2018	RunNo: 107323
Client ID: R1	Batch ID: 42657	TestNo: EPA 350.1 (EPA 350.1)	Analysis Date: 10/15/2018	SeqNo: 1634548
Analyte	Result	MRL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Nitrogen, Ammonia (As N)	1.834	0.150 1.645 0.155	102 80 120	

Qualifiers:

E Value above quantitation range

H Holding times for preparation or analysis exceeded

J Analyte detected below quantitation limits

ND Not Detected at the Minimum Reporting Limit

R RPD outside accepted recovery limits

CLIENT:Stillwater SciencesWork Order:1810273

Project: Medford WWTP 821-AMENDED

ANALYTICAL QC SUMMARY REPORT

TestCode: AMMONIA_AUTO_W

Sample ID 1810B22-02BMS	SampType: MS	TestCode: AMMONIA_A Units: mg/L	Prep Date: 11/8/2018	RunNo: 107936
Client ID: ZZZZZ	Batch ID: 42876	TestNo: EPA 350.1 (EPA 350.1)	Analysis Date: 11/9/2018	SeqNo: 1644852
Analyte	Result	MRL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Nitrogen, Ammonia (As N)	2.461	0.150 1.645 1.133	80.7 80 120	
Sample ID 1810273-01AMSD	SampType: MSD	TestCode: AMMONIA_A Units: mg/L	Prep Date: 10/12/2018	RunNo: 107323
Client ID: R1	Batch ID: 42657	TestNo: EPA 350.1 (EPA 350.1)	Analysis Date: 10/15/2018	SeqNo: 1634549
Analyte	Result	MRL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Nitrogen, Ammonia (As N)	1.756	0.150 1.645 0.155	97.3 80 120 1.834	4.35 20
Sample ID 1810B22-02BMSD	SampType: MSD	TestCode: AMMONIA_A Units: mg/L	Prep Date: 11/8/2018	RunNo: 107936
Client ID: ZZZZZ	Batch ID: 42876	TestNo: EPA 350.1 (EPA 350.1)	Analysis Date: 11/9/2018	SeqNo: 1644853
Analyte	Result	MRL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
	Result			

Value above quantitation range

H Holding times for preparation or analysis exceeded

ND Not Detected at the Minimum Reporting Limit

R RPD outside accepted recovery limits

J Analyte detected below quantitation limits

CLIENT:Stillwater SciencesWork Order:1810273

Project: Medford WWTP 821-AMENDED

ANALYTICAL QC SUMMARY REPORT

TestCode: NO2-COLOR_W

Sample ID MB-R107143	SampType: MBLK	TestCode: NO2-COLOR Units: ma/L	Prep Date:	RunNo: 107143
	Batch ID: P1071/3		Analysis Date: 10/5/2018	SedNo: 1631807
	Datem 10. K10/143	Testino. Sim 4300-1102	Analysis Date. 10/3/2010	Seque: 1031837
Analyte	Result	MRL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Nitrite Nitrogen	ND	0.0100		
Sample ID LCS-R107143	SampType: LCS	TestCode: NO2-COLOR Units: mg/L	Prep Date:	RunNo: 107143
Client ID: ZZZZZ	Batch ID: R107143	TestNo: SM 4500-NO2	Analysis Date: 10/5/2018	SeqNo: 1631898
Analyte	Result	MRL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Nitrite Nitrogen	9.144	1.00 10 0	91.4 80 120	
Sample ID 1810273-01BMS	SampType: MS	TestCode: NO2-COLOR Units: mg/L	Prep Date:	RunNo: 107143
Sample ID 1810273-01BMS Client ID: R1	SampType: MS Batch ID: R107143	TestCode: NO2-COLOR Units: mg/L TestNo: SM 4500-NO2	Prep Date: Analysis Date: 10/5/2018	RunNo: 107143 SeqNo: 1631900
Sample ID 1810273-01BMS Client ID: R1 Analyte	SampType: MS Batch ID: R107143 Result	TestCode: NO2-COLOR Units: mg/L TestNo: SM 4500-NO2 MRL SPK value SPK Ref Val	Prep Date: Analysis Date: 10/5/2018 %REC LowLimit HighLimit RPD Ref Val	RunNo: 107143 SeqNo: 1631900 %RPD RPDLimit Qual
Sample ID 1810273-01BMS Client ID: R1 Analyte Nitrite Nitrogen	SampType: MS Batch ID: R107143 Result 0.03892	TestCode: NO2-COLOR Units: mg/L TestNo: SM 4500-NO2 MRL SPK value SPK Ref Val 0.0100 0.0385 0	Prep Date: Analysis Date: 10/5/2018 %REC LowLimit HighLimit RPD Ref Val 101 80 120	RunNo: 107143 SeqNo: 1631900 %RPD RPDLimit Qual
Sample ID 1810273-01BMS Client ID: R1 Analyte Nitrite Nitrogen Sample ID 1810273-01BMSD	SampType: MS Batch ID: R107143 Result 0.03892 SampType: MSD	TestCode: NO2-COLOR Units: mg/L TestNo: SM 4500-NO2 MRL SPK value SPK Ref Val 0.0100 0.0385 0 0 TestCode: NO2-COLOR Units: mg/L	Prep Date: Analysis Date: 10/5/2018 %REC LowLimit HighLimit RPD Ref Val 101 80 120 Prep Date:	RunNo: 107143 SeqNo: 1631900 %RPD RPDLimit Qual RunNo: 107143
Sample ID 1810273-01BMS Client ID: R1 Analyte Nitrite Nitrogen Sample ID 1810273-01BMSD Client ID: R1	SampType: MS Batch ID: R107143 Result 0.03892 SampType: MSD Batch ID: R107143	TestCode: NO2-COLOR Units: mg/L TestNo: SM 4500-NO2 MRL SPK value SPK Ref Val 0.0100 0.0385 0 0 TestCode: NO2-COLOR Units: mg/L TestCode: NO2-COLOR Units: mg/L TestNo: SM 4500-NO2 Units: mg/L	Prep Date: Analysis Date: 10/5/2018 %REC LowLimit HighLimit RPD Ref Val 101 80 120 Prep Date: Analysis Date: 10/5/2018	RunNo: 107143 SeqNo: 1631900 %RPD RPDLimit Qual RunNo: 107143 SeqNo: 1631901
Sample ID 1810273-01BMS Client ID: R1 Analyte Nitrite Nitrogen Sample ID 1810273-01BMSD Client ID: R1 Analyte	SampType: MS Batch ID: R107143 Result 0.03892 SampType: MSD Batch ID: R107143 Result	TestCode: NO2-COLOR Units: mg/L TestNo: SM 4500-NO2 MRL SPK value SPK Ref Val 0.0100 0.0385 0 0 TestCode: NO2-COLOR Units: mg/L TestCode: NO2-COLOR Units: mg/L TestNo: SM 4500-NO2 Units: mg/L MRL SPK value SPK Ref Val	Prep Date: Analysis Date: 10/5/2018 %REC LowLimit HighLimit RPD Ref Val 101 80 120 Prep Date: Analysis Date: 10/5/2018 %REC LowLimit HighLimit RPD Ref Val %REC LowLimit HighLimit RPD Ref Val	RunNo: 107143 SeqNo: 1631900 %RPD RPDLimit Qual RunNo: 107143 SeqNo: 1631901 %RPD RPDLimit Qual

Qualifiers: E

E Value above quantitation range

H Holding times for preparation or analysis exceeded

J Analyte detected below quantitation limits

ND Not Detected at the Minimum Reporting Limit

R RPD outside accepted recovery limits

Stillwater Sciences **CLIENT:** Work Order: 1810273

Medford WWTP 821-AMENDED **Project:**

ANALYTICAL QC SUMMARY REPORT

TestCode: NO2NO3_AUTO_W

Sample ID MBLK	SampType: MBLK	TestCode: NO2NO3_AU Units: mg/L	Prep Date:	RunNo: 107217
Client ID: ZZZZZ	Batch ID: R107217	TestNo: EPA 353.2	Analysis Date: 10/10/2018	SeqNo: 1633080
Analyte	Result	MRL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Nitrate Nitrogen	ND	0.0500		
Sample ID LCS	SampType: LCS	TestCode: NO2NO3_AU Units: mg/L	Prep Date:	RunNo: 107217
Client ID: ZZZZZ	Batch ID: R107217	TestNo: EPA 353.2	Analysis Date: 10/10/2018	SeqNo: 1633079
Analyte	Result	MRL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Nitrate Nitrogen	30.57	1.00 30 0	102 90 110	
Sample ID 1810233-08AMS	SampType: MS	TestCode: NO2NO3_AU Units: mg/L	Prep Date:	RunNo: 107217
Sample ID 1810233-08AMS Client ID: ZZZZZ	SampType: MS Batch ID: R107217	TestCode: NO2NO3_AU Units: mg/L TestNo: EPA 353.2	Prep Date: Analysis Date: 10/10/2018	RunNo: 107217 SeqNo: 1633058
Sample ID 1810233-08AMS Client ID: ZZZZZ Analyte	SampType: MS Batch ID: R107217 Result	TestCode: NO2NO3_AU Units: mg/L TestNo: EPA 353.2 MRL SPK value SPK Ref Val	Prep Date: Analysis Date: 10/10/2018 %REC LowLimit HighLimit RPD Ref Val	RunNo: 107217 SeqNo: 1633058 %RPD RPDLimit Qual
Sample ID 1810233-08AMS Client ID: ZZZZZ Analyte Nitrate Nitrogen	SampType: MS Batch ID: R107217 Result 1.159	TestCode:NO2NO3_AUUnits:mg/LTestNo:EPA 353.2MRLSPK valueSPK Ref Val0.10010.0394	Prep Date: Analysis Date: 10/10/2018 %REC LowLimit HighLimit RPD Ref Val 112 80 120	RunNo: 107217 SeqNo: 1633058 %RPD RPDLimit Qual
Sample ID 1810233-08AMS Client ID: ZZZZZ Analyte Nitrate Nitrogen Sample ID 1810233-08AMSD	SampType: MS Batch ID: R107217 Result 1.159 SampType: MSD	TestCode: NO2NO3_AU Units: mg/L TestNo: EPA 353.2 MRL SPK value SPK Ref Val 0.100 1 0.0394 TestCode: NO2NO3_AU Units: mg/L	Prep Date: Analysis Date: 10/10/2018 %REC LowLimit HighLimit RPD Ref Val 112 80 120 Prep Date:	RunNo: 107217 SeqNo: 1633058 %RPD RPDLimit Qual RunNo: 107217
Sample ID 1810233-08AMS Client ID: ZZZZZ Analyte Nitrate Nitrogen Sample ID 1810233-08AMSD Client ID: ZZZZZ	SampType: MS Batch ID: R107217 Result 1.159 SampType: MSD Batch ID: R107217	TestCode:NO2NO3_AUUnits:mg/LTestNo:EPA 353.2MRLSPK valueSPK Ref Val0.10010.0394TestCode:NO2NO3_AUUnits:mg/LTestNo:EPA 353.2	Prep Date: Analysis Date: 10/10/2018 %REC LowLimit HighLimit RPD Ref Val 112 80 120 Prep Date: Analysis Date: 10/10/2018	RunNo: 107217 SeqNo: 1633058 %RPD RPDLimit Qual RunNo: 107217 SeqNo: 1633059
Sample ID 1810233-08AMS Client ID: ZZZZZ Analyte Nitrate Nitrogen Sample ID 1810233-08AMSD Client ID: ZZZZZ Analyte	SampType: MS Batch ID: R107217 Result 1.159 SampType: MSD Batch ID: R107217 Result	TestCode: NO2NO3_AU Units: mg/L TestNo: EPA 353.2 MRL SPK value SPK Ref Val 0.100 1 0.0394 TestCode: NO2NO3_AU Units: mg/L TestCode: NO2NO3_AU Units: mg/L TestNo: EPA 353.2 MRL SPK value SPK Ref Val	Prep Date: Analysis Date: 10/10/2018 %REC LowLimit HighLimit RPD Ref Val 112 80 120 Prep Date: Prep Date: Analysis Date: 10/10/2018 %REC LowLimit HighLimit RPD Ref Val %REC LowLimit HighLimit RPD Ref Val	RunNo: 107217 SeqNo: 1633058 %RPD RPDLimit Qual RunNo: 107217 SeqNo: 1633059 %RPD RPDLimit Qual

Qualifiers:

Е Value above quantitation range Holding times for preparation or analysis exceeded

Analyte detected below quantitation limits J

ND Not Detected at the Minimum Reporting Limit

Н R RPD outside accepted recovery limits

CLIENT:Stillwater SciencesWork Order:1810273

Project: Medford WWTP 821-AMENDED

ANALYTICAL QC SUMMARY REPORT

TestCode: PHOS-O_W

Sample ID MB-R107122	SampType: MBLK	TestCode: PHOS-O_W Units: mg/L	Prep Date:	RunNo: 107122
Client ID: ZZZZZ	Batch ID: R107122	TestNo: SM 4500-P E	Analysis Date: 10/5/2018	SeqNo: 1631715
Analyte	Result	MRL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Orthophosphate (As P)	ND	0.0250		
Sample ID LCS-R107122	SampType: LCS	TestCode: PHOS-O_W Units: mg/L	Prep Date:	RunNo: 107122
Client ID: ZZZZZ	Batch ID: R107122	TestNo: SM 4500-P E	Analysis Date: 10/5/2018	SeqNo: 1631716
Analyte	Result	MRL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Orthophosphate (As P)	0.4956	0.0250 0.5 0	99.1 85 115	
Sample ID 1810273-08BMS	SampType: MS	TestCode: PHOS-O_W Units: mg/L	Prep Date:	RunNo: 107122
Sample ID 1810273-08BMS Client ID: R4B	SampType: MS Batch ID: R107122	TestCode: PHOS-O_W Units: mg/L TestNo: SM 4500-P E	Prep Date: Analysis Date: 10/5/2018	RunNo: 107122 SeqNo: 1631725
Sample ID 1810273-08BMS Client ID: R4B Analyte	SampType: MS Batch ID: R107122 Result	TestCode: PHOS-O_W Units: mg/L TestNo: SM 4500-P E MRL SPK value SPK Ref Val	Prep Date: Analysis Date: 10/5/2018 %REC LowLimit HighLimit RPD Ref Val	RunNo: 107122 SeqNo: 1631725 %RPD RPDLimit Qual
Sample ID 1810273-08BMS Client ID: R4B Analyte Orthophosphate (As P)	SampType: MS Batch ID: R107122 Result 0.2961	TestCode: PHOS-O_W Units: mg/L TestNo: SM 4500-P E MRL SPK value SPK Ref Val 0.0250 0.2 0.1015	Prep Date: Analysis Date: 10/5/2018 %REC LowLimit HighLimit RPD Ref Val 97.3 80 120	RunNo: 107122 SeqNo: 1631725 %RPD RPDLimit Qual
Sample ID 1810273-08BMS Client ID: R4B Analyte Orthophosphate (As P) Sample ID 1810273-08BMSD	SampType: MS Batch ID: R107122 Result 0.2961 SampType: MSD	TestCode: PHOS-O_W Units: mg/L TestNo: SM 4500-P E MRL SPK value SPK Ref Val 0.0250 0.2 0.1015 TestCode: PHOS-O_W Units: mg/L	Prep Date: Analysis Date: 10/5/2018 %REC LowLimit HighLimit RPD Ref Val 97.3 80 120 Prep Date:	RunNo: 107122 SeqNo: 1631725 %RPD RPDLimit Qual RunNo: 107122
Sample ID 1810273-08BMS Client ID: R4B Analyte Orthophosphate (As P) Sample ID 1810273-08BMSD Client ID: R4B	SampType: MS Batch ID: R107122 Result 0.2961 SampType: MSD Batch ID: R107122	TestCode: PHOS-O_W Units: mg/L TestNo: SM 4500-P E MRL SPK value SPK Ref Val 0.0250 0.2 0.1015 0.1015 TestCode: PHOS-O_W Units: mg/L TestCode: SM 4500-P E Units: mg/L TestNo: SM 4500-P E Units: mg/L	Prep Date: Analysis Date: 10/5/2018 %REC LowLimit HighLimit RPD Ref Val 97.3 80 120 Prep Date: Analysis Date: 10/5/2018	RunNo: 107122 SeqNo: 1631725 %RPD RPDLimit Qual RunNo: 107122 SeqNo: 1631726
Sample ID 1810273-08BMS Client ID: R4B Analyte Orthophosphate (As P) Sample ID 1810273-08BMSD Client ID: R4B Analyte	SampType: MS Batch ID: R107122 Result 0.2961 SampType: MSD Batch ID: R107122 Result	TestCode: PHOS-O_W Units: mg/L TestNo: SM 4500-P E MRL SPK value SPK Ref Val 0.0250 0.2 0.1015 0.1015 TestCode: PHOS-O_W Units: mg/L TestCode: SM 4500-P E Units: mg/L MRL SPK value SPK Ref Val MRL SPK value SPK Ref Val	Prep Date: Analysis Date: 10/5/2018 %REC LowLimit HighLimit RPD Ref Val 97.3 80 120 Image: Compare the second seco	RunNo: 107122 SeqNo: 1631725 %RPD RPDLimit Qual RunNo: 107122 SeqNo: 1631726 %RPD RPDLimit Qual

Qualifiers: E

s: E Value above quantitation range

H Holding times for preparation or analysis exceeded

J Analyte detected below quantitation limits

ND Not Detected at the Minimum Reporting Limit

R RPD outside accepted recovery limits

CLIENT:Stillwater SciencesWork Order:1810273

Project: Medford WWTP 821-AMENDED

ANALYTICAL QC SUMMARY REPORT

TestCode: PHOS-T_W

Sample ID MB-42630	SampType: MBLK	TestCode: PHOS-T_W Units: mg/L	Prep Date: 10/10/2018	RunNo: 107220
Client ID: ZZZZZ	Batch ID: 42630	TestNo: SM 4500-P E (SM 4500 P-E	Analysis Date: 10/10/2018	SeqNo: 1633121
Analyte	Result	MRL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Phosphorus, Total (As P)	ND	0.0250		
Sample ID MB-42639	SampType: MBLK	TestCode: PHOS-T_W Units: mg/L	Prep Date: 10/11/2018	RunNo: 107250
Client ID: ZZZZZ	Batch ID: 42639	TestNo: SM 4500-P E (SM 4500 P-E	Analysis Date: 10/11/2018	SeqNo: 1633447
Analyte	Result	MRL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Phosphorus, Total (As P)	ND	0.0250		
Sample ID LCS-42630	SampType: LCS	TestCode: PHOS-T_W Units: mg/L	Prep Date: 10/10/2018	RunNo: 107220
Client ID: ZZZZZ	Batch ID: 42630	TestNo: SM 4500-P E (SM 4500 P-E	Analysis Date: 10/10/2018	SeqNo: 1633122
Analyte	Result	MRL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Phosphorus, Total (As P)	0.4804	0.0250 0.5 0	96.1 85 115	
Sample ID LCS-42639	SampType: LCS	TestCode: PHOS-T_W Units: mg/L	Prep Date: 10/11/2018	RunNo: 107250
Client ID: ZZZZZ	Batch ID: 42639	TestNo: SM 4500-P E (SM 4500 P-E	Analysis Date: 10/11/2018	SeqNo: 1633448
Analyte	Result	MRL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Phosphorus, Total (As P)	0.5051	0.0250 0.5 0	101 85 115	
Sample ID 1810217-01AMS	SampType: MS	TestCode: PHOS-T_W Units: mg/L	Prep Date: 10/10/2018	RunNo: 107220
Client ID: ZZZZZ	Batch ID: 42630	TestNo: SM 4500-P E (SM 4500 P-E	Analysis Date: 10/10/2018	SeqNo: 1633126
Analyte	Result	MRL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Phosphorus, Total (As P)	9.706	0.625 5 4.438	105 80 120	

Qualifiers:

E Value above quantitation range

H Holding times for preparation or analysis exceeded

J Analyte detected below quantitation limits

ND Not Detected at the Minimum Reporting Limit

R RPD outside accepted recovery limits

Stillwater Sciences **CLIENT:** Work Order: 1810273

Medford WWTP 821-AMENDED **Project:**

ANALYTICAL QC SUMMARY REPORT

TestCode: PHOS-T_W

Sample ID 1810301-03AMS	SampType: MS	TestCode: PHOS-T_W Units: mg/L	Prep Date: 10/11/2018	RunNo: 107250
Client ID: ZZZZZ	Batch ID: 42639	TestNo: SM 4500-P E (SM 4500 P-E	Analysis Date: 10/11/2018	SeqNo: 1633454
Analyte	Result	MRL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Phosphorus, Total (As P)	9.376	0.500 4 5.22	104 80 120	
Sample ID 1810217-01AMSD	SampType: MSD	TestCode: PHOS-T_W Units: mg/L	Prep Date: 10/10/2018	RunNo: 107220
Client ID: ZZZZZ	Batch ID: 42630	TestNo: SM 4500-P E (SM 4500 P-E	Analysis Date: 10/10/2018	SeqNo: 1633127
Analyte	Result	MRL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Phosphorus, Total (As P)	9.376	0.625 5 4.438	98.8 80 120 9.706	3.45 15
				0.10
Sample ID 1810301-03AMSD	SampType: MSD	TestCode: PHOS-T_W Units: mg/L	Prep Date: 10/11/2018	RunNo: 107250
Sample ID 1810301-03AMSD Client ID: ZZZZZ	SampType: MSD Batch ID: 42639	TestCode: PHOS-T_W Units: mg/L TestNo: SM 4500-P E (SM 4500 P-E)	Prep Date: 10/11/2018 Analysis Date: 10/11/2018	RunNo: 107250 SeqNo: 1633455
Sample ID 1810301-03AMSD Client ID: ZZZZZ Analyte	SampType: MSD Batch ID: 42639 Result	TestCode: PHOS-T_W Units: mg/L TestNo: SM 4500-P E (SM 4500 P-E MRL SPK value SPK Ref Val	Prep Date: 10/11/2018 Analysis Date: 10/11/2018 %REC LowLimit HighLimit RPD Ref Val	RunNo: 107250 SeqNo: 1633455 %RPD RPDLimit Qual

Value above quantitation range

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Minimum Reporting Limit

R RPD outside accepted recovery limits

Analyte detected below quantitation limits J

CLIENT:Stillwater SciencesWork Order:1810273

Project: Medford WWTP 821-AMENDED

ANALYTICAL QC SUMMARY REPORT

TestCode: TKN_AUTO_W

Sample ID MB-42621	SampType: MBLK	TestCode: TKN_AUTO_ Units: mg/L	Prep Date: 10/23/2018	RunNo: 107536
Client ID: ZZZZZ	Batch ID: 42621	TestNo: EPA 351.2 (EPA 351.1)	Analysis Date: 10/24/2018	SeqNo: 1637622
Analyte	Result	MRL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Nitrogen, Kjeldahl, Total	ND	0.625		
Sample ID MB-42847	SampType: MBLK	TestCode: TKN_AUTO_ Units: mg/L	Prep Date: 11/1/2018	RunNo: 107798
Client ID: ZZZZZ	Batch ID: 42847	TestNo: EPA 351.2 (EPA 351.1)	Analysis Date: 11/5/2018	SeqNo: 1641665
Analyte	Result	MRL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Nitrogen, Kjeldahl, Total	ND	0.625		
Sample ID MB-42956	SampType: MBLK	TestCode: TKN_AUTO_ Units: mg/L	Prep Date: 11/13/2018	RunNo: 107536
Client ID: ZZZZZ	Batch ID: 42956	TestNo: EPA 351.2 (EPA 351.1)	Analysis Date: 11/14/2018	SeqNo: 1648378
Analyte	Result	MRL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Nitrogen, Kjeldahl, Total	ND	0.625		
Sample ID LCS-42621	SampType: LCS	TestCode: TKN_AUTO_ Units: mg/L	Prep Date: 10/23/2018	RunNo: 107536
Client ID: ZZZZZ	Batch ID: 42621	TestNo: EPA 351.2 (EPA 351.1)	Analysis Date: 10/24/2018	SeqNo: 1637621
Analyte	Result	MRL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Nitrogen, Kjeldahl, Total	3.768	0.625 4.112 0	91.6 90 110	
Sample ID LCS-42847	SampType: LCS	TestCode: TKN_AUTO_ Units: mg/L	Prep Date: 11/1/2018	RunNo: 107798
Client ID: ZZZZZ	Batch ID: 42847	TestNo: EPA 351.2 (EPA 351.1)	Analysis Date: 11/5/2018	SeqNo: 1641664
Analyte	Result	MRL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Nitrogen, Kjeldahl, Total	4.092	0.625 4.112 0	99.5 90 110	

Qualifiers:

E Value above quantitation range

H Holding times for preparation or analysis exceeded

J Analyte detected below quantitation limits

ND Not Detected at the Minimum Reporting Limit

R RPD outside accepted recovery limits

Stillwater Sciences **CLIENT:** Work Order: 1810273

Medford WWTP 821-AMENDED **Project:**

ANALYTICAL QC SUMMARY REPORT

TestCode: TKN_AUTO_W

Sample ID LCS-42956	SampType: LCS	TestCode: TKN_AUTO_ Units: mg/L	Prep Date: 11/13/2018	RunNo: 107536		
Client ID: ZZZZZ	Batch ID: 42956	TestNo: EPA 351.2 (EPA 351.1)	Analysis Date: 11/14/2018	SeqNo: 1648377		
Analyte	Result	MRL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual		
Nitrogen, Kjeldahl, Total	5.370	0.625 5 0	107 90 110			
Sample ID 1810185-02BMS	SampType: MS	TestCode: TKN_AUTO_ Units: mg/L	Prep Date: 10/23/2018	RunNo: 107536		
Client ID: ZZZZZ	Batch ID: 42621	TestNo: EPA 351.2 (EPA 351.1)	Analysis Date: 10/24/2018	SeqNo: 1637600		
Analyte	Result	MRL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual		
Nitrogen, Kjeldahl, Total	ND	0.625 4.112 0	0 80 120	MI		
Sample ID 1810B22-02BMS	SampType: MS	TestCode: TKN_AUTO_ Units: mg/L	Prep Date: 11/1/2018	RunNo: 107798		
Client ID: ZZZZZ	Batch ID: 42847	TestNo: EPA 351.2 (EPA 351.1)	Analysis Date: 11/5/2018	SeqNo: 1641651		
Analyte	Result	MRL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual		
Nitrogen, Kjeldahl, Total	2.118	0.625 4.112 0.355	42.9 80 120	М		
Sample ID 1810185-02BMSD	SampType: MSD	TestCode: TKN_AUTO_ Units: mg/L	Prep Date: 10/23/2018	RunNo: 107536		
Client ID: ZZZZZ	Batch ID: 42621	TestNo: EPA 351.2 (EPA 351.1)	Analysis Date: 10/24/2018	SeqNo: 1637601		
Analyte	Result	MRL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual		
Nitrogen, Kjeldahl, Total	ND	0.625 4.112 0	0 80 120 0	0 20 MI		
Sample ID 1810B22-02BMSD	SampType: MSD	TestCode: TKN_AUTO_ Units: mg/L	Prep Date: 11/1/2018	RunNo: 107798		
Client ID: ZZZZZ	Batch ID: 42847	TestNo: EPA 351.2 (EPA 351.1)	Analysis Date: 11/5/2018	SeqNo: 1641652		
Analyte	Result	MRL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual		
Nitrogen, Kjeldahl, Total	3.150	0.625 4.112 0.355	68.0 80 120 2.118	39.2 20 MI		

Qualifiers:

Е Value above quantitation range

Н Holding times for preparation or analysis exceeded

Analyte detected below quantitation limits J

ND Not Detected at the Minimum Reporting Limit

R RPD outside accepted recovery limits

Chr.y. Dr. And Schutzen Project Number: Solution of the surcharge Constraint Solution of the surcharge Solution of the surcharge Constraint Constraint Solution of the surcharge Constraint Advacture Solution of the surcharge Constraint Mathematic Mathematic Constraint Mathematic Mathematic </th <th>March Project Number: Result for the field of the fie</th> <th>Chr. Apr. A Project Nume: Result of the field of the field of the field of the second of the second of the field of the second of the field of the second of the field of the field of the field of the second of the field of the field of the field of the second of the field of the fiel</th> <th>NESEARCH ORPORATION Ital Testing Laboratory Sireet * Medford, OR 97501 678 fax (541) 770-2901 information</th> <th>Chain of Chain of C This Chain of Custody is a LEGAL DO Section B Required Project Information Project Name: Nee 신유리 ベレTP</th> <th>USIOUY KECOFO DCUMENT and must be filled ou section c invoice Information Attention:</th> <th>ut accurately. Page of ut accurately. Section D Rush Status (Subject to Scheduling)</th>	March Project Number: Result for the field of the fie	Chr. Apr. A Project Nume: Result of the field of the field of the field of the second of the second of the field of the second of the field of the second of the field of the field of the field of the second of the field of the field of the field of the second of the field of the fiel	NESEARCH ORPORATION Ital Testing Laboratory Sireet * Medford, OR 97501 678 fax (541) 770-2901 information	Chain of Chain of C This Chain of Custody is a LEGAL DO Section B Required Project Information Project Name: Nee 신유리 ベレTP	USIOUY KECOFO DCUMENT and must be filled ou section c invoice Information Attention:	ut accurately. Page of ut accurately. Section D Rush Status (Subject to Scheduling)
U-12.05 Report Tec/Log H, (Lu, M-z;Cl, Andrees: Callenses Defense 3 Business Days (10% surfnergi) Mr X1.1.C.U. Complexin 3 Contraction 3 Business Days (10% surfnergi) Mr Analysis Requested Analysis Requested 3 Business Days (10% surfnergi) Mr Complexin Analysis Requested Analysis Requested Analysis Requested Mr Complexin Matrix Date Defense Defense Complexin Matrix Date Defense Defense Defense Sign Matrix	H 2 0 5 Report To: (Josh M. (Gibber) Report To: (Josh M. (Gibber) Comport of the surface of the surf	If 255 Report Tex/Data H (G Still Luich 2:Cla, Address: 3 Business Days (0% anchords) Complexing Complexing 3 Business Days (0% anchords) Percent view Complexing 2 a. 48 hours (10% surthugs) Percent view Address: 2 a. 48 hours (10% surthugs) Percent view Address: 2 a. 48 hours (10% surthugs) Percent view Address: 2 a. 48 hours (10% surthugs) Percent view Address: 2 a. 48 hours (10% surthugs) Percent view Address: 2 a. 48 hours (10% surthugs) Complexing 2 a. 48 hours (10% surthugs) Address: Complexing 2 b. 48 by 2 by	praph Ave	Project Number: 82/	Company Name:	A Vieinare I VI 17 Vays
Mrt Xi L Cut. Convince and fragon Br Xi L Cut. Convict and the first of the f	Marky St. 1. Cut. Converse user of the strategy	Marky St. 1. Col Converse user and converse user and all Report Converse user and converse user and all Report Analysis Requested Analysis Requested Analysis Requested Analysis Requested Analysis Requested Analysis Requested Analysis Requested Analysis Requested Complication Analysis Requested Analysis Requested Analysis Requested Analysis Requested Analysis Requested Complication Analysis Requested Analysis Requested Marchine Analysis Requested Analysis Requested Marchine Analysis Requested Analysis Requested Mar	Soth	Report To: Nort 4 (3 5411 with 2: - COM	Address:	3 Bielese Daminger
Mill Mill Mill 01 Analysis Requested 01 Analysis Analysis 01 Analysis Analysis 01 Analysis Analysis 01 Analysis Analysis 02 Analysis Analysis 02 Analysis Analysis 03 Analysis Analysis 03 Analysis Analysis 04 Analysis Analysis 04 Analysis Analysis 05 Analysis Analysis 04	The control of the	The complete sector Analysis Requested Init Report Vec Init Report	wer sci.com	Copy To:		24 - 48 hours / 10% surcharge)
Authorized Ves Authorized Ves Nutronized	Analysis Requested Authorized Yes Number of the constraints fail Report Yes No No No complement Complement No No No complement No No No No faile No No No No	Analysis Requested Analysis Requested fail Report Ves fail Report<	ax:	dokney (a) Stillunberzi.con	P.O.#	Other
air Report varianzes air Report Anarysis requested Anarysis requested Completed Cineted Cineted Sign A Completed Cineted Cineted Sign A NRC Workorder # Kr. Workorder # NRC Workorder # Kr. Workorder # NRC Workorder # Completed Cineted Cineted Sign A Sign A V. Dicking water N. Dicking Water Were Sign A Second Sign A Sign A M. Dicking Water With Water Sign A Dicking Mater With With Mater With Water Sign A Sign A Mathematication A Figure Cineted Cinet Cineta Cineted Cinet	Init Report Analysis requested Init Report Complicity Matrix Matrix Complicity Matrix	Init Report Analysis requested Init Report Comptime Matrix Matrix Comptime Matrix Matrix Comptime Matrix Matrix Matrix Matrix Matrix Matrix Comptime Matrix Matrix <t< td=""><td>a verkey</td><td></td><td></td><td>Authorized Yes No</td></t<>	a verkey			Authorized Yes No
Image: Second S	Mark Complete Time Complete Time Complete Time Complete Contract Constrained Contract Contract Contract	Image: Second S	Mail Report Yes No		Analysis Requested	
Image: Second	Image: Solution of the constraint of	Image: Solution of the solution o		بر Iets	2	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Completed Time Time <td>Complicants Matrix Date collected Time Size S <t< td=""><td></td><td>nisinoo San San</td><td>24:44 2007 2009 2009</td><td>NRC Workorder #</td></t<></td>	Complicants Matrix Date collected Time Size S <t< td=""><td></td><td>nisinoo San San</td><td>24:44 2007 2009 2009</td><td>NRC Workorder #</td></t<>		nisinoo San San	24:44 2007 2009 2009	NRC Workorder #
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Known Known <th< td=""><td>FA:-In Workered Z V Operation Connected Z V Connected Conne Connected Connected</td><td>Comp/Grab</td><td>Matrix Date Time o</td><td>N- E-N MA</td><td>(Lab Use Only) 1010 MPC Samulo #</td></th<>	FA:-In Workered Z V Operation Connected Z V Connected Conne Connected Connected	Comp/Grab	Matrix Date Time o	N- E-N MA	(Lab Use Only) 1010 MPC Samulo #
Sign Print Discrete Discrete Discrete Discrete V Drinking Water WW-Wasterenter W-Wasterenter W-WAWWW	No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No	Sign Print Discrete Directed Directed <td>Grah</td> <td>W/ io/outrie 10:54 2 /</td> <td>/</td> <td>Kemarks/Field Data (Lab Use Only)</td>	Grah	W/ io/outrie 10:54 2 /	/	Kemarks/Field Data (Lab Use Only)
Model Model Model Model Model Model Model Model Model Model Model Model Model	Number Number <td>No. No. No.<td></td><td></td><td></td><td>2 BOTTLES, 1 Marshad OI +- B</td></td>	No. No. <td></td> <td></td> <td></td> <td>2 BOTTLES, 1 Marshad OI +- B</td>				2 BOTTLES, 1 Marshad OI +- B
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	NV Distriction Distremain Distriction Distriction <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td> <td></td> <td>ING NI</td> <td></td> <td>CA12</td>	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		ING NI		CA12
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	N. Drinking Water W. W. Water Sold L L V L V W. Drinking Water W. W. Water Sold L L V L V W. Drinking Water W. W. Water Sold Sold L L V L V W. Drinking Water W. W. Water Sold Sold<	No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. <t< td=""><td></td><td></td><td></td><td>01401 0101</td></t<>				01401 0101
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	N. Drinking Water WW - Wasterwater N. SoliSolid S. So	N Linitian Linitian Linitian <td>_</td> <td>11/ (20:91) 1</td> <td></td> <td>212-22 20/2-22</td>	_	11/ (20:91) 1		212-22 20/2-22
X X X X X X Y Director Q	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	χ		13:30 ((0-FON
X X <thx< th=""> <thx< th=""> <thx< th=""></thx<></thx<></thx<>	X X <td>X X X X X X Y<td>></td><td>4 4 10:05 4 1 3</td><td>7 7 7</td><td></td></td>	X X X X X X Y <td>></td> <td>4 4 10:05 4 1 3</td> <td>7 7 7</td> <td></td>	>	4 4 10:05 4 1 3	7 7 7	
N - Drinking Water Ww - Wastewater Ww - Www - Wastewater Ww - Www - Wastewater Ww - Wastewater Ww - Www - Www - Wastewater Ww - Www	W. Drinking Water Www. Wastewater M. I:51 f M. I	W - Drinking Water WW - Vaster W - Vaster S - Soil/Solid SL - Sludge O - Oli WP - Wipe OT - Other Date Time Lab Use Only M - Drinking Water WW - Vaster WW - Vaster Water WW - Vaster Water WW - Vaster Water W - Water S - Soil/Solid SL - Sludge O - Oli WP - Wipe OT - Other Date Time Lab Use Only M - Drinking Water WW - Vaster WW - Water W - Water S - Soil/Solid SL - Sludge O - Oli WP - Wipe OT - Other Section G Lab Use Only M - Drinking Water WW - Water WW - Water M - Water M - Muther of Boules Received on Ice: X Yes No M - Drinking WAT M - Drinking WAT M - Drinking Water M - Muther M - Muther of Boules Received in Ice: X Yes No M - M - M - M - M - M - M - M - M - M -	×	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	x x x x	C I I I I I I I I I I I I I I I I I I I
W - Drinking Water WW - Wastewater W - Water S - Soil/Solid SL - Sludge O - Oil WP - Wipe OT - Other Sign Prime Sign Prim Date Time Prim Prim Section G Lab Use Only Prim Section G Prim Prime Section G Prim Prime Section G Prim Prime Section G Prime Prime Prime Prime Prim Prime Prime <td>W - Drinking Water Ww - Wastewater W - Water S - Soil/Solid SL - Sludge O - Oil WP - Wipe OT - Other Section G Sign Print Date Time Print Date Time Section G Of Wu D Deckwed 100-04.5 8744 Print Date Time Emp: Constant Section G Mu D Deckwed 100-04.5 8744 Print Deckwed 100-04.5 874 Print Deckwed 100-04.5 874 Print Deckwed 100-04.5 874 Print Deckwed 100-04.5 874 Print Deckwed 100-05.5 100 Print Deckwed 100-05.5 100 Print Deckwed 100-05.5 100 Print Deckwed</td> <td>W - Drinking Water Ww - Wastewater W - Water S - Soil/Solid SL - Sludge O - Oil WP - Wipe OT - Other Sector G Sign Print Date Time Image Sign Print Of 4 UD Det K_C Image Image Imag</td> <td></td> <td>ab 11:51 4</td> <td></td> <td>G-HOT .</td>	W - Drinking Water Ww - Wastewater W - Water S - Soil/Solid SL - Sludge O - Oil WP - Wipe OT - Other Section G Sign Print Date Time Print Date Time Section G Of Wu D Deckwed 100-04.5 8744 Print Date Time Emp: Constant Section G Mu D Deckwed 100-04.5 8744 Print Deckwed 100-04.5 874 Print Deckwed 100-04.5 874 Print Deckwed 100-04.5 874 Print Deckwed 100-04.5 874 Print Deckwed 100-05.5 100 Print Deckwed 100-05.5 100 Print Deckwed 100-05.5 100 Print Deckwed	W - Drinking Water Ww - Wastewater W - Water S - Soil/Solid SL - Sludge O - Oil WP - Wipe OT - Other Sector G Sign Print Date Time Image Sign Print Of 4 UD Det K_C Image Image Imag		ab 11:51 4		G-HOT .
Sign Print Date Time Print Det/D Det/D Print	Sign Print Date Time Sign Print Date Time Print Date Time Received IO-D-LS Section G Received on Ice: Yes: No NUMber of Blank Included: Yes: No	Sign Print Date Time Sign Print Date Time Print Date Time Received IO-ULK Received on los: VUMA Dhrcl eux Wumber of Bottles Received on los: Mumber of Blank Included: Yes No	W - Drinking Water WW - V	Vastewater W - Water S - Soil/Solid SL - Sturine D -	Oil WP - Wine OT Other	
The conversion of the conversi	Mathematical DAVID Detrocy IOD-LR RtH Temp: No Providence PD-LK Received on Ice: Yes No Philos PHICHER PHICHER PHICHER No	The Lab Use Only PAVID Detried 10:0:4.8 Received on Ice: Yes Philosoft 10:0:4.1 Philosoft 10:0:4.2	Sign	Print		Section G
Image: Control of the second of the secon	NLMALD MARK WUNT OH Received on Ice: Yes No NLMALD MARK MUMMI U-D-IS Received: 10 PH Checked: Yes No NLMALD MMMI U-D-IS RH Field Blank Included: Yes No New No	NIMAL DATION WAY WOUND OF Received on Ice: Yes No NIMAL DATION MANIN Wither of Bottles Received on Ice: Yes No Nimber of Bottles Received on Ice: Yes No NEWAL DATION MANIN Without Stell Blank Included: Yes No Received Via UPS FedEX Other X Hand	Sta	0.414 A.140		Lab Use Only
ILAS APC +L 2°C: Yes No ILAS APL PH Checked: PH ILAS APL PH Checked: Yes	MUM.L Mumber of Bottles Received on Ice: Yes No NUMMer of Bottles Received on Ice: Yes No NUMMer of Bottles Received: No NUMMer of Blank Included: Yes	MUMAL APC +L 2°C: Yes No NUMBER of Bottles Received on Ice: Yes No NUMBER of Bottles Received (No Number of Bottles Received) No NUMAL NUMBER of Bottles Received No NUMBER of Blank Included: Yes No		ANAXA MALA	NUTLA OFT	Temp: λ^{ν}
Number of Bottles Received on Ice: X res No Number of Bottles Received: 1 P PH Checked: COC Seals Intact: Yes No NA	NUMALD AND AND AND AND AND AND AND AND AND AN	Mutual Received on Ice: X res No Number of Bottles Received: Number of Bottles Received: No Number of Bottles Received: Number of Bottles Received: No Number of Bottles Received: No No Number of Bottles No No				4°C +/- 2°C: Yes No
ULANLO UDICIELA NUMMIT 10-0-15 RAH Checked: Yes No NA Field Rink Included: Ves No NA	Number of Bottles Received: 1/P	Number of Bottles Received: I/P				Received on Ice: X Yes No
NAAX KORGUN KUNNI WOLS BUT COCSEIS Intact: Yes No NA	NLAAX D K Drd eur NUMM 10-0-15 844 DH Checked: Ffeld Blank Included: Yes No Received Vis 1105 Cord Seals Interct: Yes No	NLAAX DADULA NUMIT 10-0-15 844 PH Checked: Field Blank Included: Yes No NA Received Via UPS FedEX Other X Hand	<			Number of Bottles Received: 1/0
COC Seals Intact: Yes No NA	COC Seals Intact: Yes No NA Field Blank Included: Yes No NA Received Via LIDS Field Blank Included: Yes No	Received Via UPS FedEX Other X Hand	UX-VYU	Thurberg 1 Alban	In Sali BUT	pH Checked:
	Received Via 11DS Forder AL	Received Via UPS FedEX Other X Hand			THO CHO MIL	COC Seals Intact: Yes No NA

Appendix D

Supplemental October 2018 BMI Results and Laboratory Identification

		Table 1.	Diay-Cui		ancy mat		i compo	SICIOIT DC		impics at		1 2010 30	inpung s	
Site	1	1*	2	2*	3	3*	4	4*	5	5*	6	6*	7	7*
1	100%													
1*	63%	100%												
2	44%	64%	100%											
2*	33%	52%	72%	100%										
3	48%	47%	46%	37%	_ 100% _									
3*	55%	53%	51%	41%	76%	100%								
4	45%	41%	36%	35%	40%	45%	_ 100% _							
4*	41%	41%	35%	35%	43%	48%	83%	100%						
5	16%	20%	31%	26%	25%	31%	28%	24%	100%					
5*	15%	19%	29%	25%	23%	28%	25%	24%	72%	100%				
6	34%	33%	29%	26%	43%	46%	60%	53%	42%	35%	100%			
6*	32%	34%	29%	25%	51%	51%	50%	52%	45%	45%	67%	100%		
7	43%	37%	35%	24%	43%	41%	45%	42%	32%	27%	59%	49%	100%	
7*	40%	39%	38%	29%	38%	40%	43%	42%	40%	35%	54%	49%	78%	100%

Table 1:Bray-Curtis Similarity Matrix in BMI composition between samples at October 2018 sampling sites

*Replicate

Figure 1: Total BMI taxa richness and abundance at October 2018 sampling sites

Figure 2: EPT taxa richness and abundance at October 2018 sampling sites

Figure 3: Percent of tolerant and intolerant BMI individuals at October 2018 sampling sites

Figure 5: Relative abundance of BMI functional feeding groups at at October 2018 sampling sites

Figure 6: BMI voltinism at October 2018 sampling sites

BMI Identification Data

Aquatic Biology Associates, Inc 3490 NW Deer Run Street Corvallis, OR 97330 aquaticbio.com Robert Wisseman, Senior Scientist 541-740-1568 bob@aquaticbio.com

Client Stillwater Sciences Client contact Noah Hume, noah@stillwatersci.com

 Project
 Rogue River @ Medford WWTP

 Project location
 Rogue River above and below the Medford WWTP

 Project objectives
 Impacts to BMI community from WWTP outfall

 The WWTP is OR: Jackson County, 42.43834 N, -122.90723 W, 366 m elevation

Surber sampler

8 square foot composite

500 micron

erosional

Note that a large/rare search was conducted on each sample. This information was incorporated in the quantitative subsample data by listing any taxa encountered in the large/reare search that was not found in the quantitative subsample as an abundance of 1, and with the subsampling correction factor set to 1 (or full sample basis). If desired, we can rerun the data with all the large/rare specimens removed.

Laboratory

Contact Robert Wisseman General taxonomy bobwisseman@mac.com

James DiGiulio Jon Chironomidae taxonomy Mite digiulio@peak.org jlee

500 micron

PNAMP level 2

genus

genus/species group

class Oligochaeta

Jon Lee Mite taxonomy jlee@humboldt1.com

Sampling protocol

Sampling gear Mesh size Square area sampled Habitat sampled

Laboratory protocol

Mesh size Subsampling target count Subsampling device Sorting efficacy Taxa abundances

500 organism minimum Caton tray 95+% converted to a full sample and 1 square meter basis

Identification protocol

Standard taxonomic effort Chironomidae (midges) Oligochaeta (segmented worms) Acari (mites)

Life stages: U L

U unknown (for non-insects) L larvae LE Larval exuvia P pupae PE pupal exuvia A adult E egg

Biomass determination

Published length weight regressions used to calculate biomass. Length of all macroinvertebrates measured to nearest 0.5 mm if individual <5 mm, or nearest 1 mm if > 5 mm. Reported as the biomass corresponding to the taxa abundances (see laboratory protocol above).

Data analysis

 Standard taxonomic effort (STE)
 Version 2 ABA

 Taxa traits (e.g. feeding group, etc.)
 Version 2 ABA (see "Traits" tab in this output for documentation)

 Programmed in R by Adam and Robert Wisseman

Version 2 of ABA STE and taxa traits is a draft version still under development.

Abundances converted to a standard full sample (if subsampled) and one square meter basis.

Date run: '2018-11-18 Analysis program in developmental phase.

Explanation of metrics	All abundances and biomass converted to a full sample and 1 square meter basis.
Subsample count (raw)	Total count of subsample prior to correction factors being applied for subsampling and conversion to a 1 square meter basis. Multivities to convert subsample obvidences to a full comprehension of 14 /0 the gravity and the the subsample correction is V2
Area correction factor to square meter	Multiplier to convert subsample abundances to a full sample basis, e.g. if 1/2 the sample was sorted, then the subsample correction is Az. Converts abundances of full sample to a 1 square meter basis, e.g. if 1/2 the sample was sorted, then the conversion to 1 square meter is X1.345
SUMMARY METRICS	
Total taxa richness	Total count of unique taxa in sample.
Total biomass (mg)	Total advantance in sample diverse to a num sample and in square meter basis. Total biomass in full sample adjusted to a 1 square meter basis as calculated by length/mass regressions.
Large/rare biomass (mg)	Biomass from taxa marked as "large/rare" in the "Incidental" column. These taxa may dominate the sample biomass.
EPT taxa	I total biomass - largerare biomass Taxa in the insect orders Echemerootera+Plecoptera+Trichoptera. or mavflies+stoneflies+caddisflies.
Hilsenhoff Biotic Index (WY DEQ version)	
$HBI = \sum_{i=1}^{S} \frac{n_i \cdot a_i}{i}$	S is the number of taxa present.
$HDI = \sum_{i=1}^{N} \overline{N}$	n is the abundance of the i-th taxa.
	a_i is the WY HBI index value (can be found on the Traits sheet). An index of 11 indicates a taxa that is discarded from the calculation.
DOMINANCE AND DIVERSITY	Metrics that examine how dominated the community is by a single or few taxa.
Subdominant taxa	The second most numerous taxon.
Shannon-Weaver Diversity (loge)	Information theory index that examines how evenly abundance is allocated among the taxa present in the community.
$H' = -\sum_{i=1}^{n} \frac{n_i}{\ln\left(\frac{n_i}{n}\right)}$	S is the number of taxa present.
$- \sum_{i=1}^{N} N^{-1}(N)$	n_is the abundance of the i-th taxa.
Shannon-Weaver Diversity (log2)	
$E=H'/\ln(S)$	Where H' and S are defined above.
TOI FRANT AND INTOI FRANT TAXA	Resert on babitat association and best professional judgement (Wisseman unpublished). Water temperature and dissolved oxygen are the dominant environmental factors
Total tolerant taxa	based on nativat association takes processional pagement (missional anapparatio), made temperature and association are the dominant enhoused as Sum of the moderately and highly tolerant taxa. Taxa found frequently in habitats with warm water temperature and low dissolved oxygen. Eurythermal.
Highly tolerant taxa	Taxa highly tolerant of warm water and very low dissolved oxygen. Found often in stagnant and highly eutrophic habitat.
Moderately tolerant taxa	Taxa moderately tolerant of warm water and low dissolved oxygen. Sum of moderately indegrant and biokly indegrant taxa. Cool and cod water biota found in babitate with biob dissolved oxygen.
Highly intolerant taxa	Taxa generally found in habitats with year-round cold water temperatures and very high dissolved oxygen. Indicative of bull trout zone. Cold water biota, cold stenotherms.
Moderately Intolerant taxa	Taxa generally found in cool water habitats, cold to cool water eurythermal. Indicative of general salmonid zone.
VOL I INISM (length of life cycle)	Modified from Poff et al. 2006
Univoltine (1 year life cycle)	Taxa where a significant propulsion of individuals require more train one year to complete their me cycle. Taxa where most individuals exhibit a one year life cycle.
Multivoltine (< 1 year life cycle)	Taxa where a significant proportion of the population has more than one generation a year.
	Modified from Port et al. 2006 Taxa that revue and mature aure a few months as a single season
Slow seasonal life cycle	Taxa where growth and maturation extends over several seasons.
Nonseasonal life cycle	Taxa that exhibit asynchronous seasonal development, with multiple life stages present during most of the year.
OCCURRENCE IN DRIFT	Modified from Poff et al. 2006
Rare in drift Common in drift	Found rareiy in stream drift. Unit occurs during catastrophic events (e.g. 10ods).
Abundant in drift	Dominant in stream drift, behavioral drifters.
SIZE AT MATURITY	Modified from Poff et al. 2006
Small size at maturity Medium size at maturity	<9 mm long at maturity
Large size at maturity	> 10 min long at maturity > 16 min long at maturity
RHEOPHILY AND HABITAT AFFINITY	Modified from Poff et al. 2006
Depositional only Depositional and providenal	Occurs primarily in lentic habitats, stream pools and alcoves, or low gradient slowly flowing streams.
Erosional	Stream taxa associated with moderate to fast water current.
THERMAL PREFERENCE	Modified from Poff et al. 2006
Cold stenothermal and cool eurythermal	
Warm eurythermal	
NON-INSECT AND INSECT ORDERS	
Non-insect invertebrates	Hydroids, vermiform taxa, mollusks, crustaceans and mites.
Ephemeroptera (maynies) Odonata (damsel- and dragonflies)	
Plecoptera (stoneflies)	
Hemiptera (true bugs)	
Trichoptera (addisflies)	
Lepidoptera (moths)	
Coleoptera (beetles) Diptera (total)(true flies)	Inclusive of the Chironomidae
Chironomidae (true flies- midges)	Dominant and ubiquitous aquatic dipteran family.
Mollusca (shalls and bivalves) taxa	Benthic taxa include Ostracoda. Amnhinoda: Isonoda: Decanoda, and the Chydoridae (Cladocera), but not water column associated microcrustaceans (e.g. Danbnidae and Conenoda).
Baetidae (mayfly) taxa	Common, ubiquitous and diverse family of minnow-like mayfles.
Ephemerellidae (mayfly) taxa	Common, ubiquitous and diverse family of mayfiles with most taxa associated with cool-cold montane rivers. Many taxa intolerant.
Nemouridae (stonefly) taxa	Common, ubiquitots, and diverse family of insynast. Neophins, source maying our to an other all order longitudinal range in monane and comming the streams.
Rhyacophilidae (caddisfly) taxa	Common, ubiquitous and very diverse family of caddisflies. Primarily predators. Broadly distributed along river systems with peak diversity in small to mid-size, cool/cold montane streams.
Hydropsychidae (caddisfly) taxa Flmidae (riffle beetle) taxa	Lommon, usiquitous, and diverse family of net spinning caddistiles.
FEEDING GROUPS	Functional feeding groups based on the mechanism by which taxa feed. Modified from Merritt et al. 2008.
Predator taxa	Taxa that are primarily predators, consuming living animal tissue by engulfing prey or piercing prey tissues and sucking fluids. Excluding parasites.
rarasite taxa Collector-gatherer taxa	jczwenia parasies w inverteorates (e.g. Acan or mites), or miernal parasites (e.g. Nemata or roundworms). Utilize mouthaarts and other structures (or "aather" fine particulate organic matter (FPOM) that is mostiv detritus but may include alrase hacteria small animals etc.
Collector-filterer taxa	Utilize nets, mothparts or other structures to capture and consume FPOM suspended in the water column. FPOM may include algae. Jacteria, small animals, etc.
Collector (total) taxa	Sum of the collector-gatherer and collector-filterer.
Macrophyte herbivore taxa	preso called initiadophing precises. Pretore inving tassue or aquatic macrophytes ano suck nuids, e.g. 3 some Hydrophilidae. Chevers and miners of living macrophytes. Considered a subclass of shredders in Merritt et al. 2008.
Shredder taxa	Consume (chew) coarse particulate organic matter (CPOM) such as decaying leaves and wood.
Scraper taxa	"Scrape" periphyton (attached algae) and associated material from hard surfaces. Taxa axhibiting multiple dering mechanisms (abvus) with no one mechanism clearly dominant
Unknown taxa	naza zamaning malipia recaring incentinismo (abore), men to ore necesianismo recarily dominante. No information available on how and what taxon feeds on.
HABIT	Mode of existence.
Skater taxa Planktonic taxa	Adapted for "skaling" on the wayter surface. Generally excluded from benthic data sets. Inhabit the water column in lantic water or slow moving streams. Generally excluded from benthic data sets.
Diver taxa	mitada da water column in erite water is soon moning accents: Centering vacable to obtain oxygen. Gnerally excluded from benthic data sets. Swim in the water column and along the benthos, but return to the water surface to obtain oxygen. Gnerally excluded from benthic data sets.
Swimmer taxa	Exhibit fishlike swimming in lotic or lentic waters, but return to the benthos between bursts of swimming. Included in benthic data sets.
Sprawler taxa	1 each unas nave venavoran (e.g. net spinners) or morphological adaptations (e.g. claws) to attach to hard substrates in taster water current. Found on the surface of fine sediments or floating leaves of macrophytes.
Climber taxa	Found on leaves and stems of aquatic macrophyles or submerged branches and roots.
Burrower taxa	Burrow into fine sediments or tunnel into plant stems, leaves or roots (miners)
STATE OF CALIFORNIA DESIGNATIONS	nou euro to urassir as auve. Traits codina accordina to CAMLnet January 27. 2003. List of California macroinvertebrate taxa and standard taxonomic effort
CA % Sensitive EPT	Ephemeroptera, Plecoptera and Trichoptera with California Tolerance Value (CTV) of 0-2 on a 0-10 scaling.
CA % Intolerant individuals	All invertebrates with a CTV of 0-2 on a 0-10 scaling.
CA veighted tolerance value	primi merinebrates with a CTV to 6-10 to flag. The second se
CA % Predators	Primary designation of predator as classed by CA.
CA % Collector-gatherers	Primary designation of gatherer as classed by collector-gatherer by CA.
CA % Scrapers	primary designation or interest as based up conclusion mitters by conc
CA % Shredders	Primary designation of shredder as classed by CA.
BIOTIC CONDITION INDEX	
	S is the number of taxa.
$CTQa = \sum_{i=1}^{n} \frac{x \cdot q_i}{S}$	TQ_i is the BCI TV (tolerance value) from the Traits sheet. A BCI TV of 110 indicates a taxa that is exluded from the calculation.

CTQd-Community Tolerance Quotient dominance]
$CTQd = \sum_{i=1}^{S} \left(TQ_i \cdot \log(n_i)\right) / \sum_{i=1}^{S} \log(n_i)$	TQ_i and S as above. n_i is the abundance of taxa i.
SIZE CLASS	
0-2.75 mm abundance	
3-4.75 mm abundance	
5-6.75 mm abundance	
7-8.75 mm abundance	
9-10.75 mm abundance	
11-15 mm abundance	
16-20 mm abundance	
>20 mm abundance	
0-2.75 mm biomass (mg)	
3-4.75 mm biomass (mg)	
5-6.75 mm biomass (mg)	
7-8.75 mm biomass (mg)	
9-10.75 mm biomass (mg)	
11-15 mm biomass (mg)	
16-20 mm biomass (mg)	
>20 mm biomass (mg)	

Waterbody	Rogue River	Rogue River	Rogue River	Rogue River	Rogue River	Rogue River	Rogue River	Rogue River	Rogue River	Rogue River	Rogue River	Rogue River	Rogue River	Rogue River
Station	1	1	2	2	3	3	4	4	5	5	6	6	7	7
Date Replicate	2018-10-04	2018-10-04 B	2018-10-03 A	2018-10-03 B	2018-10-05 A	2018-10-05 B	2018-10-04 A	2018-10-04 B	2018-10-05 A	2018-10-05 B	2018-10-04 A	2018-10-04 B	2018-10-05 A	2018-10-05 B
Subsample count	528	570	513	527	539	524	4 523	3 532	453	501	545	5 502	536	506
Subsample correction factor to full sample	15	26.67	45.45	60	17.14	2	0 17.14	4 18.07	30	40	10.91	17.14	15	22.56
Area correction factor to square meter	1.345	1.345	5 1.345	1.345	1.345	1.34	5 1.345	5 1.345	1.345	1.345	1.345	5 1.345	1.345	1.345
Bray Curtis similarity (%)	63.26	63.26	5 72.48	72.48	76.45	5 76.4	5 82.53	3 82.53	72.23	72.23	66.87	66.87	78.30	78.30
	7 45			50			0 4	7 47				- 40		44
Total abundance	10539.42	20446 56	3094132	41576 64	12295.48	13003 3	o 4/ 8 11926.63	47 3 12860 93	18161 53	26796.43	70/3 00	0 42 0 11520.34	10738 48	41
EPT taxa richness	21	20440.30	I 24	41370.04	i 12230.40	10000.0	8 11320.00	1 13	i i i i i i i i i i i i i i i i i i i	20730.43	1543.35	5 11	13	13130.07
EPT abundance	4324.18	10079.79	12416.17	11713.6	2750.07	3314.0	8 3022.67	7 3576.75	283.8	538	1076.58	1659.84	4540.72	5407.81
Hilsenhoff Biotic Index (WY DEQ version)	4.06	3.92	2 4.27	4.21	4.08	4.2	4 4.71	1 4.67	5.95	6.39	5.17	7 5.5	5.19	5.25
DOMINANCE AND DIVERSITY	_													
% Dominant taxa	17.99	16.14	16.79	18.63	20.06	18.0	7 19.33	3 19.84	36.21	19.07	22.72	2 17	30.44	24.03
% Subdominant taxa	9.19	11.05	0 10.27	12.03	10.31	11.3	4 11.02	2 10.02	20.88	18.67	12.50	2070	10.35	13.82
% Top 5 taxa		50.35	5 52.55	59.01	59.44	53.0	6 57.02	2 51.0	79.32	77 9	59.66	54 59	68.76	61.08
% Top 10 taxa	72.36	69.65	5 75.27	78.42	74.81	69.7	8 80.8	3 75.4	90.87	89.75	77.03	3 78.78	80.6	78.71
Shannon-Weaver Diversity (loge)	3	3.07	2.97	2.89	2.93	3.03	3 2.83	3 2.95	2.17	2.39	2.82	2 2.86	2.59	2.71
Shannon-Weaver Diversity (log2)	4.33	4.44	4.28	4.17	4.23	4.3	7 4.09	9 4.25	i 3.13	3.44	4.07	7 4.13	3.74	3.91
Shannon Evenness Index	0.79	0.82	2 0.76	0.71	0.73	0.7	8 0.74	4 0.77	0.62	0.68	0.74	0.77	0.69	0.73
TOLEKANI AND INTOLEKANI TAXA	1 40		,				4 -				, a.		10	
Total tolerant abundance	3350 30	4734 90	12 6786 8	10169 55	3688.53	4357	+ 14 8 2354.11	+ 11 3 2138.77	11 7425 74	14367 20	1819 57	+ 14 7 4587.61	1858 70	3037.01
% Total tolerant by abundance	31.79	23.16	5 21.93	24.46	30) 31.1	4 19.74	4 16.63	40.89	53.62	22.9	39.79	17.31	20.05
Highly tolerant taxa richness] 0) 0	is) 1		1 1	1 0) 2	2	1	1 1	1	1
Highly tolerant abundance	0	0) 0	C	161.37	349.	7 46.11	1 C	1210.5	4897.15	264.13	3 1613.73	161.4	303.43
% Highly tolerant by abundance	0	0	0	0	1.312	2.49	9 0.3866	5 C	6.665	18.28	3.325	5 14	1.503	2.003
Moderately tolerant taxa ricnness	3350.30	4734.00	12	10160 55) 14 3527.15	1008	3 13 1 2308.01	5 11 5 2139.77	6215.24	9470 14	1555 4/) 13 I 2073.89	1607 30	2733 58
% Moderately tolerant by abundance	31 79	23.16	3 21.93	24.46	28.69	28.6	4 19.35	5 16.63	34.22	35 34	19.58	2579	15.81	18.04
Total intolerant taxa richness	2	3	3 1	1	20.00	20.0	1 1	1 1	C	00.01	(0 0	0	0
Total intolerant abundance	342.97	466.32	2 2384.08	7747.2	2512.81	1587.	1 46.11	1 24.3	; C	0) (0	0
% Total intolerant by abundance	3.254	2.281	1 7.705	18.63	20.44	11.3	4 0.3866	6 0.189) C	0) (0	0
Highly intolerant taxa richness	1	1		C) 1		0 0			0	() (0	0
Highly Intolerant abundance % Highly intolerant by abundance	0 7657	35.87	, U		0 46.11								0	0
Moderately intolerant taxa richness	0.7007	0.1104	2 1	1	1		1 1	1 1	, C	0) 0	0	0
Moderately intolerant abundance	262.27	430.45	5 2384.08	7747.2	2466.7	1587.	1 46.11	1 24.3	; C	0	() (0	0
% Moderately intolerant by abundance	2.489	2.105	5 7.705	18.63	20.06	5 11.3	4 0.3866	6 0.189) C	0) (0	0
VOLTINISM (length of life cycle)	-													
TAXA RICHNESS	_													-
Semivolune (> 1 year life cycle) taxa richness	15	16	> 0 3 10	21	ז י 22	· 1	5 IU 8 11	J 5 1 11	, 4	- 4 	16	5 C	12	/ 9
Multivoltine (< 1 year life cycle) taxa richness	21	19	23	29	28	2	5 26	5 27	22	21	23	3 26	25	25
ABUNDANCE														
Semivoltine (> 1 year life cycle) abundance	2224.63	3622.99	3795.46	5818.47	2169.7	2287.8	4 1573	3 1460.94	4117.05	5864.2	456.24	1015.69	850.04	763.96
Univoltine (1 year life cycle) abundance	3795.59	10295.02	2 15469.99	16712.97	4777.41	5922.0	3 4498.08	4886.48	8435.84	8612.03	3628.5	5 4150.94	3956.99	5434.12
Multivoltine (< 1 year life cycle) abundance	4519.2	6528.55	11675.88	19045.2	5348.37	5783.	5 5855.54	4 6513.51	5608.65	12320.2	3859.25	6362.71	5931.45	8952.59
% Semivoltine (> 1 year life cycle) by abundance	21 11	17 72	2 12 27	13.90	17.65	16.3	5 13 19	9 11.36	22.67	21.88	5 743	8 8 8 1	7 916	5 042
% Univoltine (1 year life cycle) by abundance	36.01	50.35	5 50	40.2	38.86	42.3	2 37.71	1 37.99	46.45	32.14	45.68	3 36	36.85	35.87
% Multivoltine (< 1 year life cycle) by abundance	42.88	31.93	3 37.74	45.81	43.5	i 41.3	3 49.1	1 50.65	30.88	45.98	48.58	3 55.19	55.24	59.09
GROWTH AND DEVELOPMENT	_													
% Fast seasonal life cycle by abundance	30.82	29.12	2 33.19	41.73	43.88	35.1	8 48.9	9 51.4	14.66	12.45	41.56	31.39	51.85	52.27
% Slow seasonal life cycle by abundance	45.04	51.4	53.96	43.51	41.85	50.9	7 38.14	4 39.52	83.34	84.94	53.08	3 61.4	39.88	42.11
	24.14	19.47	12.00	14.70	14.20	13.0	5 12.90	9.061	2	2.01	5.357	1.21	0.207	5.017
% Bare in drift by abundance	23.70	27.72	> 33.81	23.52	40.92	42 5	2 29.04	5 32.71	74.80	64.86	43.46	3 47 41	20 02	31.5
% Common in drift by abundance	48.46	49.3	3 35.97	36.5	26.46	30.3	7 25.72	2 23.25	10.67	22.89	17.75	5 27.39	19.54	17.63
% Abundant in drift by abundance	27.76	22.98	3 30.23	39.98	32.62	27.	1 45.23	3 44.03	14.44	12.25	38.79	25.19	50.54	50.87
SIZE AT MATURITY	-													
TAXA RICHNESS														
Small size at maturity taxa richness	21	18	3 23	28	28	2	5 28	3 30	23	22	24	1 26	26	22
Medium size at maturity taxa richness	16	18	3 19	22	24	1	8 14	1 12	9	10	17	7 15	13	14
ABLINDANCE	- · · ·		° 0	5	, .	•	5 5) 1	I	2	+ 1	5	5
Small size at maturity abundance	5749.88	8429.72	2 14549	24129.3	6270.5	6940.3	2 7284.84	4 7582.89	7384.05	10491	3859.25	5 5002.57	6497.69	8708.5
Medium size at maturity abundance	4560.89	11227.67	7 15836.77	17195.83	5536.83	6671.	2 4568.59	4959.39	10776.14	16144.03	4038.03	6319.29	4158.74	6406.45
Large size at maturity abundance	228.65	789.17	7 555.55	251.52	488.15	5 381.9	8 73.19	318.64	1.34	161.4	46.71	207.48	82.05	35.72
PERCENTAGE BY ABUNDANCE														
% Small size at maturity by abundance	54.56	41.23	3 47.02	58.04	51	49.	61.08	5 58.96	40.66	39.15	48.58	3 43.39	60.51	57.48
% Large size at maturity by abundance	43.27	3.86	1 01.10 1 706	41.30	, 45.03) <u>3</u> .07	, 47.0 , 27	, 30.3 3 0.613	1 36.30 7 2⊿79	0 007/06	0.25	0.58	្រ ្ស-01 } 1.8	0 764	42.20
RHEOPHILY AND HABITAT AFFINITY	_ <u>∠</u> .103	0.00		0.0048	0.51	2.1	- 0.0101	2.470	0.007400	0.0020	0.000	. 1.0	0.704	0.2000
% Depositional only by abundance	0.1914	0	0.3951	0.1941	0.5625	0.576	7 1.171	1 0.378	0.4443	0	0.5542	0.3999	1.691	0.8011
% Depositional and erosional by abundance	75.47	70.7	7 75.88	82.91	93.24	92.	1 94.76	6 97.15	98.22	99	92.21	I 97	88.35	87.96

Waterbody	Rogue River	Rogue River	Rogue River	Rogue River	Rogue River	Rogue River	Rogue River	Rogue River	Rogue River	Rogue River	Rogue River	Rogue River	Rogue River	Rogue River
Station	1	1	2	2	3	3	4	4	5	5	6	6	7	7
Date Replicate	2018-10-04	2018-10-04 B	2018-10-03	2018-10-03	2018-10-05	2018-10-05 B	2018-10-04	2018-10-04 B	2018-10-05	2018-10-05 B	2018-10-04	2018-10-04 B	2018-10-05	2018-10-05 B
% Erosional by abundance	24.34	1 29.3	23.73	3 16.9	6.198	3 7.32	4 4.0	7 2.467	1.33	3 1.004	7.23	8 2.59	9 9.957	11.24
THERMAL PREFERENCE														
% Cold stenothermal and cool eurythermal by abundance	3.446	3.158	8.693	3 18.63	22.12	2 12.	.5 0.386	6 0.378	3 () (0.3694	4 0.	2 0	0 0
% Cool/warm eurythermal by abundance	96.55	96.84	91.31	81.37	76.56	85.0	1 99.2	2 99.62	93.33	8 81.72	2 96.3	1 85.	8 98.5	98
% Warm eurythermal by abundance) 0	() () 1.312	2 2.49	9 0.397	9 (6.673	3 18.28	3 3.325	5 1,	4 1.503	3 2.003
	1													
TAXA RICHNESS	-		s	10	. 13	2 1	2 1	4 13) 14	. 1/	1	2 1	1 10	, o
Ephemeroptera (mayflies) taxa richness	-	76	7	7 10)	6	3 4			3 6	6	3 5	5 4
Odonata (damsel- and dragonflies) taxa richness	(0 0	() () ()	0	0 0) () () (0	0 C	0
Plecoptera (stoneflies) taxa richness	8	3 8	5	5 5	; 5	5	3	3 4	۰ ۱	1 () 1	2	0 3	3 4
Hemiptera (true bugs taxa richness) 0	0) () ()	0	0 0) () () () ,	0 0) 0
Megaloptera (alderflies and heligramites) taxa richness) 0	() ()	0) () () 7	0 0	0 0
Lepidoptera (caddisilies) taxa richness	- 2) /	12	<u> </u>	c 1		9	5 5 0 () (1	5 5 0 () 5) 0
Coleoptera (beetles) taxa richness		3 3	3	3		3	3	3 3	3	, I 1	4	4	3 2	2 2
Diptera (total)(true flies) taxa richness	1:	3 13	14	I 17	18	3 1	4 1	8 19) 12	2 12	2 13	3 1	4 17	17
Chironomidae (midges) taxa richness	1.	I 13	12	2 15	i 16	6 1	3 1	4 17	' 10) 11	l 1 [.]	1 1	2 15	5 15
Chironomidae (midges -Nostoc midge) taxa richness	10) 12	11	14	15	5 1	2 1	3 16	6 10) 11	l 1 [.]	1 1:	2 15	5 15
ABUNDANCE	1554.00	2402 52	7150 04	7024.02	0 1010	1 4650	7 0064.0	1 0670 40	15052 0	00650 01	2462.01	5 60407	0 2011.00	1007 05
Enhemerontera (mavflies) abundance	1004.8	- 3192.53 3 3084.03	1102.24	024.93 0 4602.50	0 3434.94	4003. 1156	7 1705 0	· 20/3.40 4 1725.50	161	≥∠2003.83 1 322 9	3403.00 3 AA2 0	J 0246./3 1 438.0	J J∠11.80	4007.95 4128.02
Odonata (damsel- and dragonflies) abundance) 0) (0) ()	0	0 0) (01) ()	0 430.0	0 0) - 0
Plecoptera (stoneflies) abundance	328.18	1255.49	186.08	86.08	71.85	5 4.0	4 25.7	4 28.34	l 1.34	i d) 16.02	2	0 60.53	34.38
Hemiptera (true bugs abundance	() 0	C) () ()	0	0 0) () () (3	0 0) 0
Megaloptera (alderflies and hellgramites) abundance		0) () ()	0 1.3	4 () () () () ,	0 0	0
I richoptera (caddistiles) abundance	2259.6	5 5739.38	7764.85	7024.93	1615.08	3 2153.3	4 1290.9	8 1822.81	121.0	215.2	2 617.65	ວ 1221.8: 7	2 889.04	1245.42
Coleontera (heetles) abundance	2017 5	5 2833.82	3424.64	58104	1661.18	20. 3 1909	.9 9 1452.3	6 1069.38	282.45	5 4304	425.5	4 7851	6 786.82	728.24
Diptera (total)(true flies) abundance	2642.93	3 4340.41	7946.93	16462.8	4426.23	4088.	.8 5188.3	4 5541.35	2542.05	5 3174.2	2 2964.14	4 2835.5	6 2199.07	4126.68
Chironomidae (midges) abundance	2400.82	4340.41	7763.54	16059.3	3872.95	5 3712.	.2 4772.0	3 5395.52	2380.65	3012.8	3 2758.	7 2766.	.4 1936.8	3519.81
Chironomidae (midges -Nostoc midge) abundance	2138.55	5 3981.7	5379.46	8312.1	1406.25	5 2125.	.1 4725.9	3 5371.22	2380.65	5 3012.8	3 2758.	7 2766.	4 1936.8	3519.81
PERCENTAGE BY ABUNDANCE														
% Non-insect invertebrates by abundance	14.75	5 15.61	23.12	2 16.9	27.94	1 33.2	6 18.9	7 20.79	82.89	84.54	43.59) 54.º	2 29.91	32.26
% Ephemeroptera (mayfiles) by abundance	16.48	3 15.09	14.43	3 11.0 <i>1</i>	8.647	ν 8.20)	0 14.	3 13.42 0 r	2 0.888	1.205	5.5/3	ວ 3.79 ດ	9 33.44 0 (27.25
% Plecoptera (stoneflies) by abundance	3.114	6.14	0.6014	0.207	0.5844	, I 0.0288	4 0.215	8 0.2204	0.007406	5 (0.2016	6	0 0.5636	0.2269
% Hemiptera (true bugs by abundance) 0	() () ()	0	0 0) () () (0	0 0) 0
% Megaloptera (alderflies and hellgramites) by abundance	() 0	C) () ()	0 0.0112	8 () () () (0 /	0 0) 0
% Trichoptera (caddisflies) by abundance	21.44	28.07	25.1	16.9	13.14	15.3	9 10.8	2 14.17	0.6665	0.8031	7.775	5 10.4	6 8.279	8.22
% Lepidoptera (moths) by abundance		0 0	0.004347	1.359	0.1875	5 0.192	2	0 0) (0.1847	7 00	0 0	0 0
% Coleoptera (beetles) by abundance % Dintera (total)(true flies) by abundance	19.14	13.80	11.07	13.96	i 13.51	13.0	12.1 12 12.1	8 8.315 5 43.00	0 1.55t	0 1.600 L 11.84	5 5.35	1 24.5	1 7.327 9 20.48	4.807
% Chironomidae (midges) by abundance	22.78	3 21.23	25.09	38.63	31.5	26.5	3 40.0	1 41.95	, 13.1 ⁻	11.24	u 34.73	3 23.9	9 18.04	23.23
% Chironomidae (midges -Nostoc midge) by abundance	20.29	9 19.47	17.39) 19.99	11.44	15.1	9 39.6	3 41.76	5 13.1 ⁻	11.24	34.73	3 23.9	9 18.04	23.23
FAMILIES AND GROUPS	-													
TAXA RICHNESS														
Oligochaeta (segmented worms) taxa richness		1 1	1	1	1		1	1 1		1 1		1	1 1	1
Mollusca (snails and bivalves) taxa richness	4 3	1	1		2	2	2	4 3	5 6	5 7		2 ,	4 4	4 3 2
Crustacea taxa richness	- 2) U		2 /			2	5	· ·	<u> </u>	<u> </u>	2 A	2 2	· 2
Baetidae (mayfly) taxa richness	1 3	2 2	2			2	2	2 2		. 2	2	2	2 2	2 2
Baetis tricaudatus complex (mayfly) taxa richness		I 1	1	1 1	1	I	1	1 1	i -	I 1	· ۱	1	1 1	1
Ephemerellidae (mayfly) taxa richness	:	3 2	3	3 3	8 3	3	1	1 2	2	I 1	I :	3	1 2	2 2
Heptageniidae (mayfly) taxa richness		2 2	2	2 3	1 3	3	2	0 0) () () .	1 /	0 0) 0
Leptohyphidae (mayfly) taxa richness	- 2) 0	() ()	0))	0 0	0 0
Chloroperlidae (mayfly) taxa richness	-	, 0 I 1	() () 1		0	0 1) (0	0 () 1
Nemouridae (stonefly) taxa richness			() () ()	0	0 0) () () (0	0 C	0
Perlidae (stonefly) taxa richness		3 2	2	2 2	2 1		1	2 2	2 () () ·	1	0 2	2 3
Perlodidae (stonefly) taxa richness	:	3 3	2	2 2	2 2	2	2	0 0) () () (о <i>(</i>	0 0	0 0
Peltoperlidae (stonefly) taxa richness	-	0	0) () ()	0	0 0) () () (<u>з</u>	0 0) 0
Pteronarcyidae (stonetly) taxa richness	-	I 1	1				0	1 1)	1	0 1	0
Glossosomatidae (caddisfly) taxa richness		· 2	1	1 1		<u>-</u>	2	1 1	, ·			<u>·</u> ·	1 1	1
Hydropsychidae (caddisfly) taxa richness	1.	1 2	2	2 2	2		1	. 1 1) 1		1	1 1	1
Lepidostomatidae (caddisfly) taxa richness		I 1	2	2 1	2	2	2	1 2	2 () () 2	2	2 1	1
Limnephilidae (caddisfly) taxa richness	() 0	C) () ()	0	0 0) () () (3	0 0	0 0
Philopotamidae (caddisfly) taxa richness) 0	C) () ()	0	0 0) () () () ,	0 0	0
Rhyacophilidae (caddisfly) taxa richness	- 2	0	2			J	1	U () () (י <u>נ</u>	0 0	0
Elmidae (riffle beetle) taxa richness	1 2	, U	(-	, l	, l	, }	3	0 l 3 ?	, (, L	, l	3	3 0	, U
Empididae (dance fly) taxa richness	1 3	, 3 0	1			2	1	1 1) ()	1	1 1	2
Athericidae (higher flies) taxa richness) Ő	Ċ) () ()	0	1 0) () () (0	o c) Ö
Simuliidae (black fly) taxa richness] ·	I 0	1	l 1	0)	0	1 1	1 1	I 1	l -	1	1 1	1
Tipulidae (crane fly) taxa richness) 0	0) () ()	0	0 0) () () (о ^г	0 0) 0

Waterbody	Rogue River	Rogue River	Rogue River	Rogue River	Rogue River	Rogue River	Rogue River	Rogue River	Rogue River	Rogue River	Rogue River	Rogue River	Rogue River	Rogue River
Station	1	1	2	2	3	3	4	4	5	5	6	6	7	7
Date Replicate	2018-10-04	2018-10-04 B	2018-10-03 A	2018-10-03 B	2018-10-05 A	2018-10-05 B	2018-10-04 A	2018-10-04 B	2018-10-05 A	2018-10-05 B	2018-10-04 A	2018-10-04 B	2018-10-05 A	2018-10-05 B
Chironomidae: Chironominae taxa richness	<u> </u>	2 2	2 2	2 4	1 3	3	3	5 :	2 2		1 .	1 4	4	3
Tanytarsini taxa richness	· ·	I 1		1 :	3 1	1	2	2	1 (D () 2	! 1	1
Chironomidae: Diamesinae taxa richness		1 2	2 '	1 '	1 2	2	1	1 :	2 (· c	1 C	0 0	0
Chironomidae: Orthocladiinae taxa richness	-	7 8	3 8	8 9	9 10)	8	7 1	1 7		B 8	3 7	10	11
Chironomidae: Prodiamesinae taxa richness						7	0	0	0 (1 (J (
Cricotopus (Nostococladius) taxa richness	1 2	i î		1	1 1	1	1	1	1 (D (0	0
ABUNDANCE														
Oligochaeta (segmented worms) abundance	685.95	5 1721.82	5196.07	7 5003.4	4 2005.64	4 2528.	6 1014.3	5 1020.7	7 6577.05	511	1 1804.9	9 1959.53	1755.22	2093.68
Mollusca (snails and bivalves) abundance	1.34	4 /1./4	305.65	D 2.69	622.44	1 726. 1 215	3 94.	9 364.5	6 5046.44 5 1250.85	10386.09	9 293.48	3 1845.61 3 1408.46	165.44	306.12
Acari (mites) abundance	827 1	932.65	1222 6	1 1210 5	5 507.17	7 968	2 92.2 4 161.3	7 267.3	5 443.85	4304	4 161.4	1 230.53	141 23	151 72
Baetidae (mayfly) abundance	504.38	3 430.45	1650.52	2 564.9	9 161.37	7 107.	6 391.9	1 413.1	7 121.05	161.4	4 190.76	5 138.32	3288.53	3732.21
Baetis tricaudatus complex (mayfly) abundance	464.02	2 358.71	1528.26	6 403.5	5 138.32	2 80.	7 299.6	9 194.4	3 121.05	107.6	6 132.07	7 115.27	3268.35	3641.18
Ephemerellidae (mayfly) abundance	1030.2	2116.4	2447.9	3713.55	5 532.92	2 860.	8 1314.0	4 1312.4	2 40.35	161.4	4 237.47	7 299.69	282.45	395.81
Heptageniidae (mayfly) abundance	201.75	538.0	366.78	3 243.45	5 322.75	ວ 161. າ	4	0			J 14.6			
Leptonyphidae (mayly) abundance	-) () (0 80.7	7 46.11	1 26.	9	0	0 0		5 (5 (20.18	. 0
Chloroperlidae (mayfly) abundance	100.88	3 358.71) (23.05	5	0	0 1.3	4 0		0 0	5 0	0 0	1.34
Nemouridae (stonefly) abundance) () (D () ()	0	0	0 0		D () (C C	0
Perlidae (stonefly) abundance	103.50	322.84	62.48	3 2.69	23.05	5 1.3	4 24.	4 25.6	5 ((0 1.34	4 0	40.35	33.03
Peltoperlidae (stonefly) abundance	122.4	+ 400.32	122.26	ວ 82.05 ງ ທ	y 24.4	+ 2.6	9 0	0	0 (0 (ט ט קיוני			
Pteronarcvidae (stonefly) abundance	1.34	35.87	, (1.34	4 1.34	1.34	1	0 1.3	4 1.3	4 1.34		0 14.6	7 (20.18	. 0
Brachycentridae (caddisfly) abundance	706.12	2 1004.39	3056.51	1 2259.6	322.75	5 995.	3 23.0	5	0 80.7	53.8	B 74.7	1 115.27	20.18	30.34
Glossosomatidae (caddisfly) abundance	524.55	5 789.17	183.39	9 161.4	4 69.16	5 26.	9 23.0	5 24.	3 40.35		D (23.05	80.7	91.03
Hydropsychidae (caddisfly) abundance	907.88	3 3336.02	3484.42	2 3792.9	138.32	2 107.	6 92.2	1 170.1	3 (53.8	8 278.8	1 184.43	685.95	1001.33
Lepidostomatidae (caddistly) abundance	80.	573.94	427.9	1 322.8	3 1014.35	ס 941. ז	5 299.6	9 /53.4	3 (0 (J 161.4*	1 /14.65	100.88	121.37
Philopotamidae (caddisily) abundance	-) () (,)	0	0	0 0		5 (5 (0
Rhyacophilidae (caddisfly) abundance	() (123.61	1 164.09	9 0) 1.3	4	0	0 0		0 0	5 C	0	0
Uenoidae (caddisfly) abundance	() () () () ()	0	0	0 0		D () (0 0	0
Elmidae (riffle beetle) abundance	2017.5	5 2833.82	2 3424.64	4 5810.4	1661.18	3 1909.	9 1452.3	6 1069.3	8 282.45	430.4	4 410.87	7 785.16	786.83	728.24
Athericidae (dance fly) abundance	181.58) 122.26	o 322.8	3 553.26	3 376. 1	6 46.1 0 13	1 72.9	1 (0 (J 14.6.	46.11	40.35	60.69
Simuliidae (higher hies) abundance	60.53	3 (61.13	3 80.7	7 ()	0 322.7	5 72.9	1 121.05	161.4	4 190.76	5 23.05	221.93	546.18
Tipulidae (crane fly) abundance	() () () () ()	0	0	0 0) C) (0 0	0
Chironomidae: Chironominae abundance	887.7	1398.97	550.17	7 484.2	2 92.21	1 53	8 368.8	5 413.1	7 524.55	591.8	B 176.09	9 92.21	443.85	546.18
Lanytarsini abundance Chiranamidaa: Diamaainaa ahundanaa	685.95	5 1004.39	427.9	1 403.5	23.05	215.	2 161.3	7 121.5	2 () () 146) 46.11 7 (60.53	60.69
Chironomidae: Orthocladiinae abundance	1311.38	2403.37	6602.07	7 14364.6	3573.26	5 2878.	3 3757.6	9 3791.4	5 1694.7	2259.6	6 2318.48	2466.7	1291.2	2215.05
Chironomidae: Prodiamesinae abundance	() () () () ()	0	0	0 0	(0 0	0 0	0	0
Chironomidae: Tanypodinae abundance	() () () () ()	0	0 24.	3 (53.8	в () () C	0
Cricotopus (Nostococladius) abundance	262.2	358.71	2384.08	3 7747.2	2 2466.7	7 1587.	1 46.1	1 24.	3 () (0 () () C	0 0
PERCENTAGE BY ABUNDANCE % Oligochaeta (segmented worms) by abundance	6 50	8 842	16.70	a 12.0°	3 16.31	1 18.0	7 8 50	5 7.93	7 36.21	19.03	7 22.7	2 17	16.35	13.82
% Mollusca (snails and bivalves) by abundance	0.01276	0.3509	0.9878	3 0.00647	7 5.062	2 5.1	9 0.795	7 2.83	5 27.79	38.76	3.694	1 16.01	1.541	2.021
% Crustacea by abundance	() () (0.1973	3 0.375	5 1.53	8 0.773	2 2.07	9 6.887	13.05	5 3.32	5 13	0.5636	3.605
% Acari (mites) by abundance	7.848	3 4.561	3.951	1 2.91	4.125	5 6.9	2 1.35	3 2.07	9 2.444	1.606	6 2.032	2 2	1.315	1.001
% Baetidae (mayfly) by abundance	4.786	5 2.105	5.334	4 1.359	9 1.312	2 0.768	9 3.28	6 3.21	3 0.6665	0.6023	3 2.40	1 1.2	30.62	24.63
% Ephemerellidae (mayfly) by abundance	4.40. 9.774	5 10.34	4.935 5 7.01	- U.9700 1 8,933	2 1.125	J U.D/b 1 615	1 110	2 10	∠ 0.0005 2 0.2222	0.401	3 2.080	0.9998	0 30.44	24.03
% Heptageniidae (mayfly) by abundance	1.914	2.632	1.18	5 0.5855	5 2.625	5 1.15	3	0	0 0	0.0020	0.1847	7 0	0 0	0 0
% Leptohyphidae (mayfly) by abundance) () (D () ()	0	0	0 0		D () (0 0	0
% Leptophlebiidae (mayfly) by abundance	0.057) (0.194	0.375	5 0.192	2	0 0.0101	0 0	(0 0) (0.1879	0
% Unioroperiidae (mayiiy) by abundance	0.957	1.754			0.1875	2	0	0 0.0104	6 (0 (0.008877
% Perlidae (stonelly) by abundance	0.9826	5 1.579	0.2019	0.00647	0.1875	, 5 0.00961	2 0.204	6 0.199	4 (0.01693	3 (0.3758	0.218
% Perlodidae (stonefly) by abundance	1.16	2.28	0.3951	1 0.1973	3 0.1984	4 0.0192	2	0	0 0) C) () C	0
% Peltoperlidae (stonefly) by abundance	() () () () ()	0	0	0 0		D () (0	0
% Pteronarcyidae (stonefly) by abundance	0.01276	6 0.1754	0.004347	7 0.003235	5 0.01094	1 7 4 4	0 0.0112	8 0.0104	6 0.007406	0.000	0.1847		0.1879	0 0 0 0 0 0
% Brachycentridae (caddisily) by abundance	4 97	4.912	9.670	5 5.430 7 0.3882	2.625	5 0.192	2 0.193	3 0.18	0 0.4443	0.2000	5 0.9403 N (0.9996	0.1678	0.2003
% Hydropsychidae (caddisfly) by abundance	8.614	16.32	11.20	6 9.123	3 1.125	5 0.768	9 0.773	2 1.32	3 (0.2008	B 3.5	1 1.6	6.388	6.609
% Lepidostomatidae (caddisfly) by abundance	0.765	2.807	1.383	3 0.7764	4 8.25	5 6.72	8 2.51	3 5.85	8 (0 2.032	2 6.199	0.9394	0.8011
% Limnephilidae (caddisfly) by abundance) () () () ()	0	0	0 0	(0 () (0	0
% Philopotamidae (caddisfly) by abundance	- 2) () 0.2004	J () נ ז ל	J 0.00061	0	0	U (ט נ י	J (0
% Uenoidae (caddisfly) by abundance	1 2) () 0.3995) 0.3941) () 0.00901	<u>~</u>	0	0 (, U
% Elmidae (riffle beetle) by abundance	19.14	13.86	11.07	7 13.98	3 13.51	- 1 13.6	5 12.1	8 8.31	5 1.555	1.606	5.172	2 6.81	7.327	4.807
% Empididae (dance fly) by abundance	1.723	3 (0.3951	1 0.7764	4.5	5 2.69	1 0.386	6 0.566	9 (0.184	0.3999	0.3758	0.4006
% Athericidae (higher flies) by abundance) () () ()	0 0.0112	8	0 (() (0 000	0 0
% Simulidae (black liy) by abundance % Tipulidae (crane fly) by abundance	0.5743		, U.1976) /	ວ 0.194′ ງ ເ		,	0 2.70	0 0.566	ອ U.0065 0 ແ	0.6023	ວ 2.40° ກ ທ	i 0.2	. 2.067	3.605
% Chironomidae: Chironominae by abundance	8.423	6.842	. 1.778	3 1.165	5 0.75	, 5 3.84	5 3.09	3 3.21	3 2.888	2.209	9 2.217	7 0.7998	4.133	3.605
% Tanytarsini by abundance	6.508	3 4.912	1.383	3 0.9705	0.1875	5 1.53	8 1.35	3 0.944	9 (() C	0.3999	0.5636	0.4006

Waterbody	Rogue River	Rogue River	Rogue River	Rogue River	Rogue River	Rogue River	Rogue River	Rogue River	Rogue River	Rogue River	Rogue River	Rogue River	Rogue River	Rogue River
Station	1	1	2	2	3	3	4	4	5	5	6	6	7	7
Date	2018-10-04	2018-10-04	2018-10-03	2018-10-03	2018-10-05	2018-10-05	2018-10-04	2018-10-04	2018-10-05	2018-10-05	2018-10-04	2018-10-04	2018-10-05	2018-10-05
Replicate % Chironomidae: Diamesinae by abundance	A 0.765	в 7 0.3500	A 0.3051	В 0 10/1	A 0.5625	B 0.1023	A 0.0664	B 2.26	а а (в	A 0.18/	х (A	В
% Chironomidae: Orthocladiinae by abundance	12.4	1 11 75	5 21.34	34.55	5 29.0F	20.5	7 31.5	2.200	9 9 33	8433	2 29.19	214	12.02	, 14.62
% Chironomidae: Prodiamesinae by abundance) () () () () () () () () () (0 0) () 0
% Chironomidae: Tanypodinae by abundance) () () () () () (0.18	9 (0.2008	3 () () (0 0
% Cricotopus (Nostococladius) by abundance	2.48	9 1.754	4 7.705	5 18.63	3 20.06	i 11.34	4 0.3866	6 0.189) () () () () (0 0
FEEDING GROUPS	-													
TAXA RICHNESS														
Predator taxa richness	1) (3 10) 11							5 5			8
Collector-datherer taxa richness	1	a 21	1 20	1 24	5 28	. 24	1 20) 2	2 16	5 16	2 2	3 22	24) <u>2</u> 1 21
Collector-filterer taxa richness	- 3	2 2	2 3	3 5	5 1		2 6	5	3 2	2 3	3 2	2 4	-	3 4
Collector (total) taxa richness	2	1 23	3 23	30) 29	26	6 25	5 20	5 18	3 19	9 25	5 26	27	25
Piercer herbivore taxa richness		1 (D 1	l 1	I C) 1	1 () () () '	1 '	1 1	(0 0
Macrophyte herbivore taxa richness	-	1 1	1 1	1	1 1	1	1 1			1	1 .	1 1	1	1
Shredder taxa richness	-		2 2	<u> </u>	1 2		1 1		<u>,</u>			2 1		
Stonefly shredder taxa richness	-	1 2	2 1	1 1	, i I 1	(, I ·		1 (, ,	1 0	1 1	0
Wood-eating taxa richness	-) (0 0) 1	1 1	(0 0) () () () () () 0
Scraper taxa richness] ·	4 4	4 7	, 7	, 7		5 5	5 ;	3 7	7 5	5 4	4 3	4	3
Omnivore taxa richness		2 2	2 2	2 3	3 2	2 2	2 2	2	1 '	1 2	2 2	2 2	: 2	2 2
Unknown feeding group taxa richness	-	1 1	1 1	1 1	I 1	1 1	1 1	I .	1 () () () () (0 0
ABUNDANCE Predator abundance	520.1	1 1362	1 709 73	1136 53	2 717 94	542.20	3 00244	1 731 0	1604	7 33934	1 027.14	5 737 74	1100.23	2 2372 15
Parasite abundance	847 3	1003. 5 1291.36	1283.74 5 1283.74	1452 F	668.55	10223	2 230.51	4617	3 484.1	2 430 4	+ 927.10 1 190.76	5 737.71 5 276.64	262.25	3 2372.15
Collector-gatherer abundance	4480.1	9362.37	7 16263.34	19209.29	5927.39	7532	2 8691.09	9770.2	11096.25	5 16193.8	5637.49	9 9199.61	7143.3	9680.83
Collector-filterer abundance	968.	4 3336.02	2 3545.55	4035	5 138.32	161.4	4 507.17	291.6	5 161.4	484.2	2 469.5	7 253.59	1008.75	1729.56
Collector (total) abundance	5448.	5 12698.39	9 19808.89	23244.29	6065.71	7693.4	4 9198.27	7 10061.92	2 11257.65	5 16678	6107.05	5 9453.2	8152.05	5 11410.39
Piercer herbivore abundance	20.1	3 (305.65	5 322.8	3 C	26.9	9 () () (0 107.6	5 14.6	7 23.05	(0 0
Macrophyte herbivore abundance	201.7	394.58	3 122.26	5 80.7	46.11	322.8	3 161.3	291.6	5 484.2	2 591.8	3 176.09	23.05	262.2	364.12
Shredder abundance	1.3	ס.יטו ו	02.40	s 1.34	F 24.4) 23.0F	20.5	a 1.34	+ 25.03) 24.1	3 1.34	+ (29.3	23.00 7 23.00	20.10	5 U
Stonefly shredder abundance	1.3	4 107.61	1 1.34	1.34	1.34		0 1.34	1.34	1.34	1 () 14.6	7 0	20.18	, 0 3 0
Wood-eating taxa abundance	-) () () 161.4	69.16	6 () () () () () () () () 0
Scraper abundance	2461.3	5 3264.27	7 2813.34	5409.59	1592.02	1694.7	7 1316.73	3 996.4	4158.74	1 5490.29	9 396.2	2 716	829.87	790.27
Omnivore abundance	707.4	7 968.52	2 3362.16	2181.59	714.65	5 1076	69.16	6 267.3	5 80.7	7 215.2	2 102.72	2 276.64	21.52	31.69
Unknown feeding group abundance	262.2	7 358.71	1 2384.08	3 7747.2	2 2466.7	1587.1	1 46.11	1 24.3	3 () () () () (0 0
PERCENTAGE BY ABUNDANCE	5.5		7 2.504	0.72/	L E 02/	2 003	7 57		0.22	12.20	11.6	7 6 200	11.00	15.66
% Parasite by abundance	8.0	1 6.316	6 4 149	3 4 94	l 5.437	7 305	5 1.933	3 3 59	9 9.55 1 2.66	1 12.2	5 240	1 2.399	2442	2 1 202
% Collector-gatherer by abundance	42.5	1 45.79	52.56	6.2	48.21	53.83	3 72.87	7 75.9	7 61.1	60.43	3 70.91	7 79.79	66.52	63.9
% Collector-filterer by abundance	9.18	3 16.32	2 11.46	9.705	5 1.125	i 1.153	3 4.252	2 2.26	0.8887	7 1.807	7 5.91	1 2.199	9.394	11.42
% Collector (total) by abundance	51.	7 62.11	1 64.02	2 55.91	49.33	54.98	3 77.12	2 78.24	4 61.99	62.24	4 76.88	8 81.99	75.91	75.31
% Piercer herbivore by abundance	0.191		0.9878	3 0.7764		0.1922	2 () () (0.401	5 0.1847	7 0.2		0 0
% Macrophyle herbivore by abundance % Shredder by abundance	0.0127	+ 1.93 5 0.5263	3 0.395	0.194	0.375	0 1922	0 0 0 1 1 2 8	2.200 3 0.199	0 007406	5 2.20	0.36%	1 02	2.442	2.403
% Caddisfly shredder by abundance	0.0127) (0.1976	6 0.000200	0.1875	0.1922	2 (0.18) () (0.1847	7 0.2	. 0.107	0 0
% Stonefly shredder by abundance	0.0127	0.5263	3 0.004347	0.003235	0.01094		0.01128	0.01046	0.007406	6 (0.184	7 0	0.1879	0
% Wood-eating taxa by abundance) () (0.3882	0.5625	i () () () () () () () (0 0
% Scraper by abundance	23.3	5 15.96	5 9.092	2 13.01	12.95	12.11	1 11.04	1 7.74	3 22.9	20.49	9 4.98	7 6.21	7.728	5.216
% Omnivore by abundance	6.71	3 4.737	7 10.87	5.247	5.812	2 7.689	0.5799	2.07	0.4443	3 0.803 ⁻	1 1.293	3 2.399	0.2004	0.2092
HABIT	2.40	1.754	+ 7.705	, 10.03	20.00	, 11.34	+ 0.3600	0.10	-	, (, (, L		, 0
TAXA RICHNESS	٦													
Skater taxa richness	1 () () () () () () () () () () () () (0 0
Planktonic taxa richness) () () () () () () () () () () () (0 0
Diver taxa richness) () () () () () () () () (0 0		0
Swimmer taxa richness	-	4 2	2 3	3 5	5 7	6	6 6	6	5 6	6 4	4 (6 7	·	3
Clinger taxa richness	2	D 24	4 31	36	5 28	5 25	5 23 5 10	3 19 N 11		5 19) 24	4 21 5 7	23	s 22
Climber taxa richness	-			3) 3		3 2		3 () (3 3		2
Burrower taxa richness		5 5	5 4	. 2	i e	; 4	4 6	3	7 5	5 3	3	3 4		5 5
Unknown habit taxa richness) () () () () () () () () () () () () 0
ABUNDANCE														
Skater abundance	_) () () () () () () () () () () (() 0
Planktonic abundance		J (J (J () () (J () (J (0
Diver abundance	827.1	7 03264	5 1222.61	1201 2	553.29	11936	3 253 50	5346	160/	7 3027/	1 425.5	1 1720	201 7	607.80
Clinger abundance	7370.0	5 13810.39	9 17796.97	19783.6	4248.53	5735.08	3 6044	5226.74	8637.59	15821.24	423.5	5466.32	7307.39	9716.55
Sprawler abundance	1050.4	5 1829.43	3 3302.38	6055.19	1592.02	1640.9	2724.32	3282.4	969.75	5 1560.2	2 1305.98	3 1221.82	907.88	1213.73
Climber abundance	100.8	609.81	1 489.04	324.15	5 1083.51	995.3	3 1152.66	6 1628.3	3 () (249.46	6 876.03	102.22	122.72
Burrower abundance	1190.3	2 3264.27	7 8130.32	14122.5	5 4818.14	4438.5	5 1752.05	5 2188.72	2 6859.5	5 5487.6	6 2083.7	2236.17	2219.25	3399.78
Unknown habit abundance) () () () () () () () () () () () (0 0
PERCENTAGE DT ABUNDANCE		, <i>,</i>	, <i>,</i>) (, <i>,</i>			, <i>'</i>	, <i>'</i>) <i>(</i>		
% Planktonic by abundance	1 3			, () (, L) (, () () () (, U) N
% Diver by abundance	1 7	- 	-) () () (-) () () (-) 0
	_													

Waterbody	Rogue River	Rogue River	Rogue River	Rogue River	Rogue River	Rogue River	Rogue River	Rogue River	Rogue River	Rogue River	Rogue River	Rogue River	Rogue River	Rogue River
Station	1	1	2	2	3	3	4	4	5	5	6	6	7	7
Date	2018-10-04	2018-10-04	2018-10-03	2018-10-03	2018-10-05	2018-10-05	2018-10-04	2018-10-04	2018-10-05	2018-10-05	2018-10-04	2018-10-04	2018-10-05	2018-10-05
Replicate	A	В	A	В	A	В	A	В	A	В	A	В	A	В
% Swimmer by abundance	7.84	8 4.56 ⁻	1 3.951	1 3.100	6 4.	5 8.45	58 2.12	6 4.15	7 9.331	1 14.6	6 5.357	15	5 1.879	4.606
% Clinger by abundance	69.9	3 67.54	4 57.52	2 47.5	8 34.5	5 40.9	8 50.6	8 40.64	4 47.56	5 59.0	4 48.83	47.41	68.05	64.13
% Sprawler by abundance	9.96	7 8.94	7 10.67	7 14.50	6 12.9	5 11.7	3 22.8	4 25.52	2 5.34	4 5.82	2 16.44	10.6	8.454	8.011
% Climber by abundance	0.957	1 2.982	2 1.58	0.779	6 8.81	2 7.11	3 9.66	5 12.60	6 ()	0 3.14	7.598	0.9519	0.81
% Burrower by abundance	11.2	9 15.96	6 26.28	3 33.9	7 39.1	31.7	2 14.6	9 17.02	2 37.77	7 20.4	8 26.23	19.4	20.67	22.44
% Unknown habit by abundance		D () () (0)	0	D () ()	0 0	() 0	0
STATE OF CALIFORNIA DESIGNATIONS														
CA % Sensitive EPT	27.2	5 30.3	7 22.15	5 16.73	2 19.3	7 21.5	7 14.1	3 16.4	7 0.896	0.803	1 6.348	9,998	5.261	4.442
CA % Intolerant individuals	30.4	9 31.0	5 30.05	5 35.3	5 40.7	4 31.9	4 16.4	5 19.	5 1.563	3 1.20	5 7.255	11	6.388	4.442
CA % Tolerant individuals	12.8	3 10.3	7 11.26	5 10.8	7 9.18	7 12.6	3.09	3 3.21	3 10.22	22.4	9 7.573	18.4	6.576	7.019
CA weighted tolerance value	4 1	9 3.96	6 4 14	1 3.8	5 3	7 41	4 47	5 46	7 54	5 57	5 523	5.36	5.23	5.23
CA % Predators	13.0	6 12.40	6.726	6.03	3 11.2	5 11.1	9 9.50	5 9.09	2 12	2 13.8	6 14.06	8,798	13.34	16.85
CA % Collector-gatherers	37.3	4 34.9	1 47.82	2 53.19	9 50.4	7 50.1	7 61.6	6 62.1	7 51.54	1 39.3	5 62.12	54.6	60.87	56.89
CA % Filterers	9.18	B 16.3	2 11.46	970	5 1 12	5 1 15	3 4 25	2 2 26	3 0.888	7 1.80	7 5 911	2 199	9 3 9 4	11 42
CA % Scrapers	25.8	6 20.3	5 14.03	3 16.12	2 21.9	5 19.9	9 12.5	9 10.7	7 29.56	39.3	6 9.051	22.8	9.619	7.428
CA % Shredders	0.765	7 3.158	3 1.383	3 0.776	4 8.2	5 6.72	2.51	3 5.85	3 ()	0 2.032	6.199	0.9394	0.8011
BIOTIC CONDITION INDEX									-	-				
CTQa- Community Tolerance Quotient actual	74.	3 73.44	4 76.14	4 77.5	2 78.8	4 80.2	86.7	2 87.1	1 95.2 ⁻	1 101.3	3 83.64	92.02	86.3	84.95
CTQd-Community Tolerance Quotient dominance	80.5	8 74.73	3 83.59	87.3	2 83.2	1 86.6	91.0	1 91.54	4 99.14	102.2	3 90.98	92.09	90	94.06
BIOLOGICAL CONDITION GRADIENT (BCG) ATTRIBUTES														
TAXA RICHNESS														
Attribute 1 taxa richness		0 0) () (0)	0	0 0) ()	0 0	() 0	0
Attribute 2 taxa richness		2 .	1 .	1 ;	3	2	0	D .	1 ()	0 2	() 2	2
Attribute 3 taxa richness	1	9 20	D 18	3 1	7 2	1 1	8 1	1 1;	3 4	1	4 11	9) 10	10
Attribute 4 taxa richness	2	3 2 [.]	1 29	3	5 3.	2 2	27 3	3 33	2 25	5 2	5 29	29	28	27
Attribute 5 taxa richness		1 .	1 2	2 ;	3 :	2	3 :	2 .	1 :	3	3 3	3	3 3	2
Attribute 6 taxa richness		D () () (0)	0	D () ()	0 0	() 0	0
Unknown attribute taxa richness		0 0) () .	1)	0	1 (· د	1	1 0	1	1	0
% TAXA RICHNESS BY ATTRIBUTE OF TOTAL RICHNESS														
Attribute 1 % of total taxa richness		D () () (0)	0	D () ()	0 0	() 0	0
Attribute 2 % of total taxa richness	4.44	4 2.326	6 2	2 5.08	5 3.50	9	0	0 2.12	в ()	0 4.444	. (4.545	4.878
Attribute 3 % of total taxa richness	42.2	2 46.5	1 36	3 28.8	1 36.8	4 37.	.5 23.4	4 27.60	6 12.12	2 12.1	2 24.44	21.43	3 22.73	24.39
Attribute 4 % of total taxa richness	51.1	1 48.84	4 58	3 59.32	2 56.1	4 56.2	25 70.2	1 68.09	9 75.76	5 75.7	6 64.44	69.05	63.64	65.85
Attribute 5 % of total taxa richness	2.22	2 2.326	6 4	1 5.08	5 3.50	6.2	4.25	5 2.128	3 9.09 [,]	1 9.09	1 6.667	7.143	6.818	4.878
Attribute 6 % of total taxa richness		D () () (0)	0	D () ()	0 0	() 0	0
Unknown attribute % of total taxa richness		D () () 1.69	5)	0 2.12	в (3.03	3 3.0	3 (2.381	2.273	0
ABUNDANCE														
Attribute 1 abundance		D () () (0)	0	D () ()	0 0	() 0	0
Attribute 2 abundance	161.	4 107.6 ⁻	1 1.34	4 83.39	9 2.6	9	0	0 24.3	3 ()	0 2.69	(40.35	2.69
Attribute 3 abundance	2488.2	5 5488.29	9 8624.75	5 14130.5	7 5075.7	6 4874.2	3022.6	7 3819.79	9 525.89	9 80	7 1411.39	1729	625.43	821.96
Attribute 4 abundance	7869.	6 14814.78	3 21948.45	5 27038.53	3 7032.	6 8688	.7 8810.4	4 8992.54	4 15253.64	18454.7	4 6089.69	7655.04	9829.26	13506.76
Attribute 5 abundance	20.1	8 35.8	7 366.78	3 322.8	8 184.4	3 430	.4 92.2	1 24.3	3 2380.65	5 7533.3	5 440.22	2143.96	5 242.1	819.27
Attribute 6 abundance		0 () () (0)	0	0 () ()	0 0	() 0	0
Unknown attribute abundance		0 () () 1.34	4)	0 1.3	4 (0 1.34	1.3	4 C	1.34	1.34	0
PERCENTAGE BY ABUNDANCE														
% Attribute 1 by abundance		0 () () (0)	0	D () ()	0 C	() 0	0
% Attribute 2 by abundance	1.53	1 0.5263	3 0.004347	0.2000	6 0.0218	3	0	0.18	9 ()	0 0.03386	(0.3758	0.01775
% Attribute 3 by abundance	23.6	1 26.84	4 27.87	7 33.99	9 41.2	3 34.8	33 25.3	4 29.3	7 2.896	3.01	2 17.77	15	5.824	5.425
% Attribute 4 by abundance	74.6	7 72.46	5 70.94	4 65.03	3 57.	2 62.0	9 73.8	7 69.92	2 83.99	68.8	7 76.66	66.4	91.53	89.15
% Attribute 5 by abundance	0.191	4 0.1754	4 1.185	5 0.7764	4 1.	5 3.07	6 0.773	2 0.18	9 13.11	1 28.1	1 5.542	18.6	2.255	5.407
% Attribute 6 by abundance		D () () (0)	0	D () ()	0 0	() 0	0
% Unknown attribute by abundance		D () (0.00323	5)	0 0.0112	в (0.007406	6 0.00501	9 0	0.01167	0.01253	0

					Materbody	Pogue Piver	Poque Piver	Poque Piver	Rogue Piver	Poque Piver	Roque River	Poque Piver	Poque Piver	Poque Piver					
					Station	1	1	2	2	3	3	4	4	5	5	6	6	7	7
					Date	2018-10-04	2018-10-04	2018-10-03	2018-10-03	2018-10-05	2018-10-05	2018-10-04	2018-10-04	2018-10-05	2018-10-05	2018-10-04	2018-10-04	2018-10-05	2018-10-05
					Replicate	A	в	A	в	A	в	A	в	A	в	A	в	A	в
Taxon Stage	Insect?	Origin Higher classification	Order	Family	Common name	Abundance	Abundance	Abundance	Abundance	Abundance	Abundance	Abundance	Abundance						
Vemata U	non-insect	Aquatic Turbellaria	miscellaneous non-insect	X Y	round worms	20.175	107.613	305.651	403.5	161 373	107.6	/83.812 69.16	534.691 194.433	40.35	3228	29 348	46 107	907.875	30 343
Prostoma U	non-insect	Aquatic Annelida: Nemertea	miscellaneous non-insect	Tetrastemmatidae	nemerteans	20.175	5 000.712	61.13	80.7	23.053	53.8	46.107	24.304	40.00		29.348	40.107	60.525	00.040
Oligochaeta U	non-insect	Aquatic Annelida: Oligochaeta	miscellaneous non-insect	x	segmented worms	685.95	5 1721.815	5196.071	5003.4	2005.637	2528.6	1014.345	1020.774	6577.05	5111	1804.896	1959.531	1755.225	2093.681
Helobdella U	non-insect	Aquatic Annelida: Hirudinea	miscellaneous non-insect	Glossiphoniidae	leeches	1									1.345				
Fluminicola U	non-insect	Aquatic Mollusca: Gastropoda	x	Hydrobiidae	snails	4							48.608	3792.9	5003.4			1.345	1.015
Galba U	non-insect	Aquatic Mollusca: Gastropoda	x	Lymnaeidae	snails	+			1 345			1 345		1 245	1 245		1 345	1 245	1.345
Physella U	non-insect	Aquatic Mollusca: Gastropoda	x	Physidae	snails	4			1.545	161.373	349.7	1.545		1170.15	4895.8	264.131	1613.731	161.4	303.432
Helisoma U	non-insect	Aquatic Mollusca: Gastropoda	x	Planorbidae	snails							1.345		1.345	1.345				
Menetus U	non-insect	Aquatic Mollusca: Gastropoda	х	Planorbidae	snails	1								40.35	53.8				
Juga U	non-insect	Aquatic Mollusca: Gastropoda	x	Pleuroceridae	snails	1.345	5 71.742	305.651	1.345	461.066	376.6	46.107	267.346		161.4	29.348	207.48	1.345	1.345
Sphaeriidae U	non-insect	Aquatic Mollusca: Bivalvia	x	Sphaeriidae	pea clams							46.107	48.608	40.35	269		23.053		
Ostracoda U	non-insect	Aquatic Crustacea: Ostracoda	x	X Grangen ustida a	seed shrimp	-			90.7	46.107	188.3	92.213	267.346	1170.15	860.8	117.392	991.292	40.35	30.343
Parifastarus II	non-insect	Aquatic Crustacea: Amphipoda	x Y	Astacidae	cravfish	4			1 345		20.9			1170.13	2030.2	140.739	307.173	20.175	515.634
Trombidiformes U	non-insect	Aquatic Arachnida: Acari	Trombidiformes	X	mites	1			80.7										
Atractides U	non-insect	Aquatic Arachnida: Acari	x	x	mites	20.175	i			46.107		23.053							
_ebertia U	non-insect	Aquatic Arachnida: Acari	x	x	mites	322.8	179.356	489.042	242.1	253.586	376.6	46.107	24.304			14.674	46.107	20.175	
Oribatida U	non-insect	Aquatic Arachnida: Acari	x	x	mites							23.053		322.8	322.8				
Protzia U	non-insect	Aquatic Araconida: Acari	×	×	mites	20.175	753 204	672 433	645.6	23.053	134.5	46 107	104 422	40.25	107.6	59 606	23.053	121.05	151 716
Sperchononsis U	non-insect	Aquatic Arachnida: Acari	×	x	mites	404.023	/ ////	61 13	242.1	23 053	80.7	23 053	24 304	40.35	107.0	58 696	23.053	121.05	131.710
Testudacarus U	non-insect	Aquatic Arachnida: Acari	x	x	mites									40.35					
Torrenticola U	non-insect	Aquatic Arachnida: Acari	x	x	mites	1				46.107			24.304			29.348	115.266		
Acentrella insignificans L	insect	Aquatic Arthropoda: Insecta	Ephemeroptera	Baetidae	mayflies	40.35	5 71.742	122.261	80.7	23.053	26.9	92.213	218.737		53.8	58.696	23.053	20.175	91.03
Baetis flavistriga complex	insect	Aquatic Arthropoda: Insecta	Ephemeroptera	Baetidae	mayflies	404.000	050 740	4500.050	80.7	400.00		000.000	40.4.400	101.05	407.0	400.000	445.000	0000.05	
Drupella grandis	insect	Aquatic Arthropoda: Insecta	Enhemeroptera	Enhemerellidae	mayfiles	404.023	5 107.613	1 345	403.5	1 345	00.7	299.095	24 304	121.03	107.0	1 345	115.200	200.33	1 345
Ephemerella excrucians group	insect	Aquatic Arthropoda: Insecta	Ephemeroptera	Ephemerellidae	mayflies	968.4	2008.784	2445.21	3631.5	530.226	860.8	1314.038	1288.12	40.35	161.4	234.783	299.693	262.275	394,462
Ephemerella tibialis L	insect	Aquatic Arthropoda: Insecta	Ephemeroptera	Ephemerellidae	mayflies	1.345	5	1.345	1.345	1.345						1.345			
Cinygma L	insect	Aquatic Arthropoda: Insecta	Ephemeroptera	Heptageniidae	mayflies]			161.4	69.16									
Epeorus L	insect	Aquatic Arthropoda: Insecta	Ephemeroptera	Heptageniidae	mayflies	20.175	5 179.356	305.651		184.426	134.5					14.674			
Heptagenia L	insect	Aquatic Arthropoda: Insecta	Ephemeroptera	Heptageniidae	mayflies	101 - 77	250 740	81.10	80.7	80.40	20.0								
entonblehiidae	insect	Aquatic Arthropoda: Insecta	Ephemeroptera	Leptophebiidae	mayfiles	181.5/5	358./12	61.13	1.345	46 107	20.9							20 175	
Capnidae	insect	Aquatic Arthropoda: Insecta	Plecoptera	Capnijdae	stoneflies	1	71,742		00.1	40.107	20.0							20.110	
Chloroperlidae L	insect	Aquatic Arthropoda: Insecta	Plecoptera	Chloroperlidae	stoneflies	1							1.345						
Sweltsa L	insect	Aquatic Arthropoda: Insecta	Plecoptera	Chloroperlidae	stoneflies	100.875	5 358.712			23.053									1.345
Calineuria californica	insect	Aquatic Arthropoda: Insecta	Plecoptera	Perlidae	stoneflies	100.875			1.345							1.345		20.175	1.345
Claassenia sabulosa	insect	Aquatic Arthropoda: Insecta	Plecoptera	Perlidae	stoneflies	1.345	286.969	61.13	1 245	23.053	1.345	1.345	24.304					20.175	30.343
Periodidae	insect	Aquatic Arthropoda: Insecta	Plecoptera	Periodidae	stoneflies	60.525	215 227	1.345	1.345		1 345	23.033	1.340						1.343
soperla	insect	Aquatic Arthropoda: Insecta	Plecoptera	Perlodidae	stoneflies	60.525	215.227	61.13	80.7	23.053									
Skwala L	insect	Aquatic Arthropoda: Insecta	Plecoptera	Perlodidae	stoneflies	1.345	5 35.871	61.13	1.345	1.345	1.345								
Pteronarcys californica L	insect	Aquatic Arthropoda: Insecta	Plecoptera	Pteronarcyidae	stoneflies	1.345	35.871	1.345	1.345	1.345		1.345	1.345	1.345		14.674		20.175	
Sialis L	insect	Aquatic Arthropoda: Insecta	Megaloptera	Sialidae	alderflies	+	107 612		90.7	60.16	205.0	1.345				1 245	46 107		
Brachvoentrus occidentalis	insect	Aquatic Arthropoda: Insecta	Trichoptera	Brachycentridae	caddisflies	706 125	896.779	3056 513	2178.9	253 586	293.9	23.053		80.7	53.8	73 37	40.107	20 175	30 343
Glossosoma	insect	Aquatic Arthropoda: Insecta	Trichoptera	Glossosomatidae	caddisflies	504 375	753 294	122 261	80.7	23 053	000.4	23.053		00.7	00.0	10.01	00.10	80.7	91.03
Glossosoma P	insect	Aquatic Arthropoda: Insecta	Trichoptera	Glossosomatidae	caddisflies	20.175	35.871	61.13	80.7	46.107	26.9		24.304						
Protoptila L	insect	Aquatic Arthropoda: Insecta	Trichoptera	Glossosomatidae	caddisflies									40.35			23.053		
Goera archaon L	insect	Aquatic Arthropoda: Insecta	Trichoptera	Goeridae	caddisflies	4	05.074	005 054		1.345									
L L	insect	Aquatic Arthropoda: Insecta	Trichoptera	Hydropsychidae	caddisfiles	007 975	35.8/1	305.051	101.4	129 22	107.6	02 212	170 120		52.9	279 905	194 426	695.05	1001 326
Hydroptila	insect	Aquatic Arthropoda: Insecta	Trichontera	Hydroptilidae	caddisflies	20 175	5 5500.140	305.651	322.8	150.52	26.9	32.213	170.128		55.0	14 674	23.053	005.85	1001.320
Hydroptila P	insect	Aquatic Arthropoda: Insecta	Trichoptera	Hydroptilidae	caddisflies	20.170		000.001	022.0		20.0				107.6	14.014	20.000		
eucotrichia L	insect	Aquatic Arthropoda: Insecta	Trichoptera	Hydroptilidae	caddisflies	1		61.13											
Lepidostoma (Neodinarthrum)	insect	Aquatic Arthropoda: Insecta	Trichoptera	Lepidostomatidae	caddisflies	80.7	573.938	366.782	322.8	991.292	914.6	299.693	729.125			146.739	691.599	100.875	121.373
epidostoma-panel case larvae	insect	Aquatic Arthropoda: Insecta	Trichoptera	Lepidostomatidae	caddisflies	-		61.13		00.050						44.074	00.050		
Ceraclea	insect	Aquatic Arthropoda: Insecta	Trichontera	Leptostomatidae	caddisflies	20.175	35.871	61.13	1 345	23.033	20.9	852 972	874.304			88 044	161 373	1 345	1 345
Psychomyia	insect	Aquatic Arthropoda: Insecta	Trichoptera	Psychomylidae	caddisflies	20.110	00.071	61.13	1.040	00.10	00.0	002.072	014.040			00.044	101.010	1.040	1.040
Rhyacophila amaudi L	insect	Aquatic Arthropoda: Insecta	Trichoptera	Rhyacophilidae	caddisflies	1			1.345										
Rhyacophila brunnea/vemna group	insect	Aquatic Arthropoda: Insecta	Trichoptera	Rhyacophilidae	caddisflies			1.345	1.345										
Rhyacophila coloradensis group	insect	Aquatic Arthropoda: Insecta	Trichoptera	Rhyacophilidae	caddisflies	4		100.001			1.345								
Rhyacophila maikini P	insect	Aquatic Arthropoda: Insecta	I richoptera	Rnyacophilidae Diralidae	caddistiles	+		122.201	101.4	22.052	26.0					14 674			
Narpus concolor	insect	Aquatic Arthropoda: Insecta	Coleoptera	Elmidae	riffle beetles	20 175	5 71 742	1 345	80.7	1 345	53.8	46 107	24 304			29.348	1 345		
Optioservus A	insect	Aquatic Arthropoda: Insecta	Coleoptera	Elmidae	riffle beetles	161.4	322.84	244.521	80.7	138.32	53.8	46.107	24.304	40.35			23.053	20.175	
Optioservus L	insect	Aquatic Arthropoda: Insecta	Coleoptera	Elmidae	riffle beetles	1735.05	5 1937.042	2139.559	4438.5	1175.718	1479.5	1267.931	923.558	242.1	430.4	352.175	691.599	746.475	697.894
A A	insect	Aquatic Arthropoda: Insecta	Coleoptera	Elmidae	riffle beetles	100.077	E00 400	1020 011	80.7	245.0	26.9	02.010	07.047			20.040	60.10	20.475	20.240
Hydraena A	insect	Aquatic Arthropoda: Insecta	Coleoptera	Emiliae	moss beetles	100.875	5 5UZ.196	1039.214	1129.8	345.8	295.9	92.213	97.217			29.348	09.16	20.175	30.343
Atherix	insect	Aquatic Arthropoda: Insecta	Diptera	Athericidae	higher flies	1						1 345				14.014			
Chelifera/Metachela L	insect	Aquatic Arthropoda: Insecta	Diptera	Empididae	dance flies	1				23.053		1.040							
Hemerodromia L	insect	Aquatic Arthropoda: Insecta	Diptera	Empididae	dance flies	181.575	5	122.261	322.8	530.226	376.6	46.107	72.912			14.674	46.107	40.35	60.686
Psychoda L	insect	Aquatic Arthropoda: Insecta	Diptera	Psychodidae	moth flies							46.107		40.35					
Simulium L	insect	Aquatic Arthropoda: Insecta	Diptera	Simuliidae	black flies	60.525	, ,	61.13	80.7			299.693	72.912	121.05	161.4	190.761	23.053	221.925	515.834
Chiropomidae P	insect	Aquatic Arthropoda: Insecta	Diptera	Chiropomidae	midaec	121.05	466 325	490.042	1120.9	129 22	260	520.000	874 040	161.4	107.6	240 457	207.49	201 75	759 59
Cardiocladius	insect	Aquatic Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	121.00	400.525	403.042	1123.0	150.52	205	550.220	24 304	101.4	107.0	248.437	207.40	121.05	515 834
Corynoneura L	insect	Aquatic Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	1					26.9								
Cricotopus L	insect	Aquatic Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	282.45	394.583	1100.345	645.6	161.373	134.5	599.386	510.387	40.35	53.8	381.523	299.693	242.1	364.118
Cricotopus (Isocladius) type 1	insect	Aquatic Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges											29.348			
Cricotopus bicinctus group	insect	Aquatic Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	262 275	359 712	2284.08	7747.2	23.053	1597 1	46 107	24 204					20.175	
Cricotopus trifascia group	insect	Aquatic Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	202.273	, 330./12	122 261	484.2	2400.703	1007.1	599 386	364 562	685 95	699.4	675 002	1014 345	141 225	182 059
Cryptochironomus L	insect	Aquatic Arthropoda: Insecta	Diptera	Chironomidae: Chironominae	midges	1			2	20.000		555.000	50-4.002	000.00	000.4	510.002	23.053		. 52.008
Diamesa L	insect	Aquatic Arthropoda: Insecta	Diptera	Chironomidae: Diamesinae	midges	80.7	35.871			46.107									
Eukiefferiella brehmi group L	insect	Aquatic Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	80.7	107.613	427.912	645.6	92.213	80.7			80.7	269	· · · · ·		'	91.03
Lukiefferiella davonica group	insect	Aquatic Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	322.8	932.65	978.084	1210.5	299.693	322.8	46.107	72.912	161.4	269	132.066	253.586	282.45	364.118
Eukiefferiella pseudomontana group	insect	Aquatic Arthropoda: Insecta	Dipteta	Chironomidae: Orthocladiinae	midges	100.875	, 215.227	794.093	1452.6	92.213		40.107	24.304	282.45	215.2	29.348	92.213	40.35	121.3/3
Vicropsectra	insect	Aquatic Arthropoda: Insecta	Diptera	Chironomidae: Chironominae: Tanvlarsini	midges	685.95	5 1004,392	427,912	242 1	23.053	161.4	138.32	121,521			14.0/4	23.053	60,525	30.343
Microtendipes pedellus group	insect	Aquatic Arthropoda: Insecta	Diptera	Chironomidae: Chironominae	midges	1						23.053						100.875	121.373
Nanocladius L	insect	Aquatic Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	20.175	i						48.608				23.053		
Nilotanypus L	insect	Aquatic Arthropoda: Insecta	Diptera	Chironomidae: Tanypodinae	midges			700 555	0017 -	007 /-		2005 25	0554.000		53.8	007.0	eno 10-	404	201 10-
Distributed lus	insect	Aquatic Arthropoda: Insecta	Diptera	Chironomidae: Onnocladiinae	midges	242.1	322.84	/33.563	2017.5	207.48	511.1	2305.33	∠ə51.936	322.8	591.8	997.829	022.439	181.575	394.462
Paratendipes	insect	Aquatic Arthropoda Insecta	Diptera	Chironomidae: Chironominae. ranytarsini	midges	+			oU.7									20 175	
Phaenopsectra L	insect	Aquatic Arthropoda: Insecta	Diptera	Chironomidae: Chironominae	midges	1						23.053		40.35				20.175	
Polypedilum L	insect	Aquatic Arthropoda: Insecta	Diptera	Chironomidae: Chironominae	midges	201.75	5 394.583	122.261	80.7	46.107	322.8	161.373	291.65	484.2	591.8	176.087	23.053	262.275	364.118
Potthastia gaedii group L	insect	Aquatic Arthropoda: Insecta	Diptera	Chironomidae: Diamesinae	midges	4	35.871	122.261	80.7	23.053	26.9	115.266	267.346			14.674			
rounasda iongimana group	insect	Aquatic Arthropoda: Insecta	upiera	Unitoriomidae: Ulamesinae	mages	4							24.304						

							Date	2018-10-04
							Replicate	A
Taxon	Stage	Insect?	Origin	Higher classification	Order	Family	Common name	Abundance
Rheocricotopus	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	
Rheotanytarsus	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Chironominae: Tanytarsini	midges	
Stenochironomus	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Chironominae	midges	
Synorthocladius	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	
Tanytarsus	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Chironominae: Tanytarsini	midges	
Thienemanniella	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	
Thienemannimyia complex	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Tanypodinae	midges	
Tvetenia bavarica group	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	
Tvetenia vitracies group	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	

	Waterbody Station Date Replicate Common name midges midges	Rogue River 1 2018-10-04 A Abundance	Rogue River 1 2018-10-04 B Abundance	Rogue River 2 2018-10-03 A Abundance	Rogue River 2 2018-10-03 B Abundance 80.7	Rogue River 3 2018-10-05 A Abundance	Rogue River 3 2018-10-05 B Abundance 53.8	Rogue River 4 2018-10-04 A Abundance 23.053	Rogue River 4 2018-10-04 B Abundance 48.608	Rogue River 5 2018-10-05 A Abundance	Rogue River 5 2018-10-05 B Abundance	Rogue River 6 2018-10-04 A Abundance	Rogue River 6 2018-10-04 B Abundance 23.053	Rogue River 7 2018-10-05 A Abundance	Rogue River 7 2018-10-05 B Abundance 60.686
	midges		35.871	1		184.426	134.5	115.266	97.217	121.05	107.6	58.696	161.373	141.225	5 30.343
_	midges midges			61.13	3 80.7	23.053	80.7		24 304		53.8			20.175	60.000
	midges midges		35.871	1	80.7	,			24.304					100.875	60.686

							Waterbody	Rogue River	Rogue River	Rogue River	Rogue River	Rogue River	Rogue River	Rogue River	Rogue River	Rogue River	Rogue River f	Rogue River R	ogue River	Rogue River	Rogue River
							Station	1	1	2	2	3	3	4	4	5	5 6	3 6	010 10 04	7	7
							Replicate	A	2018-10-04 B	A	2018-10-03 B	2018-10-05 A	2018-10-05 B	A	B	A	B 2010-10-05 2	A P	018-10-04	A	2018-10-05 B
Taxon	Stage	Insect?	Origin	Higher classification	Order	Family	Common name	% abundance	% abundance	% abundance	% abundance	% abundance	% abundance	% abundance	% abundance	% abundance	% abundance	% abundance %	abundance	% abundance	% abundance
Trepaxonemata	U	non-insect	Aquatio	c Turbellaria	miscellaneous non-insect	x	flat worms	0.1014	0.5263	0.9878	0.970	5 0.5625	5 0.7689	6.572	4.157	9.331	12.05	11.08	5.799	8.454	11.62
Prostoma	U	non-insect	Aquatio	Annelida: Nemertea	miscellaneous non-insect	x Tetrastemmatidae	nemerteans	0.1914	1.734	0.1976	0.194	1 0.1875	5 0.3845	0.3866	0.189	0.2222		0.3694	0.3999	0.5636	0.2003
Oligochaeta	U	non-insect	Aquatio	Annelida: Oligochaeta	miscellaneous non-insect	x	segmented worms	6.508	8.421	16.79	12.03	3 16.31	1 18.07	8.505	7.937	36.21	19.07	22.72	17	16.35	13.82
Helobdella Fluminicola	U	non-insect	Aquatio	Mollusca: Gastropoda	miscellaneous non-insect x	Glossiphoniidae Hydrobiidae	leeches snails	-							0.378	20.88	0.005019			0.01253	
Galba	Ŭ	non-insect	Aquatio	Mollusca: Gastropoda	x	Lymnaeidae	snails								0.070	20.00	10.07			0.01200	0.008877
Lanx	U	non-insect	Aquatio	Mollusca: Gastropoda	x	Lymnaeidae	snails				0.00323	5		0.01128		0.007406	0.005019	0.005	0.01167	0.01253	0.000
Helisoma	U	non-insect	Aquatio	c Mollusca: Gastropoda	x	Planorbidae	snails					1.312	2 2.499	0.01128		0.007406	i 0.005019	3.325	14	1.503	2.003
Menetus	U	non-insect	Aquatio	Mollusca: Gastropoda	x	Planorbidae	snails									0.2222	0.2008				
Juga Sebaariidaa	U	non-insect	Aquatio	Mollusca: Gastropoda	x	Pleuroceridae	snails	0.01276	0.3509	0.9878	0.00323	5 3.75	5 2.691	0.3866	2.079	0 2222	0.6023	0.3694	1.8	0.01253	0.008877
Ostracoda	U	non-insect	Aquatio	Crustacea: Ostracoda	x	X	seed shrimp	-				0.375	5 1.346	0.7732	2.079	0.4443	3.212	1.478	8.598	0.3758	0.2003
Crangonyx	U	non-insect	Aquatio	Crustacea: Amphipoda	x	Crangonyctidae	scuds				0.194	1	0.1922			6.443	9.838	1.847	4.399	0.1879	3.405
Trombidiformes	U	non-insect	Aquatio	Crustacea: Decapoda	x Trombidiformes	Astacidae	craytisn mites				0.00323	5 1									
Atractides	Ũ	non-insect	Aquatio	Arachnida: Acari	x	x	mites	0.1914				0.375	5	0.1933							
Lebertia	U	non-insect	Aquatio	c Arachnida: Acari	x	x	mites	3.063	0.8772	1.581	0.582	3 2.062	2 2.691	0.3866	0.189	4 777	4 205	0.1847	0.3999	0.1879	
Protzia	U	non-insect	Aquatio	Arachnida: Acari	x	x	mites	0.1914				0.1875	5 0.9612	0.1933		1.777	1.205		0.2		
Sperchon	U	non-insect	Aquatio	c Arachnida: Acari	x	x	mites	4.403	3.684	2.173	1.55	3 0.9375	5 2.691	0.3866	1.512	0.2222	0.4015	0.7389	0.2	1.127	1.001
Sperchonopsis Testudacarus	U	non-insect	Aquatio	Arachnida: Acari	x	×	mites	-		0.1976	0.582	3 0.1875	5 0.5767	0.1933	0.189	0.2222	,	0.7389	0.2		
Torrenticola	Ŭ	non-insect	Aquatio	Arachnida: Acari	x	x	mites					0.375	5		0.189	0.2222		0.3694	0.9998		
Acentrella insignificans	L	insect	Aquatio	Arthropoda: Insecta	Ephemeroptera	Baetidae	mayflies	0.3828	0.3509	0.3951	0.194	1 0.1875	5 0.1922	0.7732	1.701		0.2008	0.7389	0.2	0.1879	0.6008
Baetis flavistriga complex Baetis tricaudatus complex	L	insect	Aquatio	c Arthropoda: Insecta c Arthropoda: Insecta	Ephemeroptera Ephemeroptera	Baetidae	mayflies mavflies	4.403	1.754	4.939	0.194	1 5 1.125	5 0.5767	2.513	1.512	0.6665	0.4015	1.662	0.9998	30.44	24.03
Drunella grandis	L	insect	Aquatio	Arthropoda: Insecta	Ephemeroptera	Ephemerellidae	mayflies	0.5743	0.5263	0.004347	0.194	1 0.01094	4		0.189			0.01693		0.1879	0.008877
Ephemerella excrucians group	L	insect	Aquatio	Arthropoda: Insecta	Ephemeroptera Enhemeroptera	Ephemerellidae	mayflies mayflies	9.188	9.825	7.903	8.73	4 4.312 5 0.01004	2 6.151	11.02	10.02	0.2222	0.6023	2.955	2.599	2.442	2.604
Cinygma	L	insect	Aquatio	Arthropoda: Insecta	Ephemeroptera	Heptageniidae	mayflies	0.01270		0.004347	0.388	2 0.5625	5					0.01085			
Epeorus	L	insect	Aquatio	Arthropoda: Insecta	Ephemeroptera	Heptageniidae	mayflies	0.1914	0.8772	0.9878		1.5	5 0.9612					0.1847			
Heptagenia Rhithrogena	L	insect insect	Aquatio	c Arthropoda: Insecta	Epnemeroptera	Heptageniidae Heptageniidae	mayflies mayflies	1,723	1,754	0.1976	0.194	1 5 0,5625	5 0.1922								
Leptophlebiidae	Ē	insect	Aquatio	Arthropoda: Insecta	Ephemeroptera	Leptophlebiidae	mayflies				0.194	1 0.375	5 0.1922							0.1879	
Capniidae	L	insect	Aquatio	Arthropoda: Insecta	Plecoptera	Capniidae	stoneflies		0.3509						0.01046						
Sweltsa	L	insect	Aquatio	Arthropoda: Insecta	Plecoptera	Chloroperlidae	stoneflies	0.9571	1.754			0.1875	5		0.01046						0.008877
Calineuria californica	L	insect	Aquatio	Arthropoda: Insecta	Plecoptera	Perlidae	stoneflies	0.9571			0.00323	5						0.01693		0.1879	0.008877
Claassenia sabulosa Hesperoperta pacifica	L	insect	Aquatio	Arthropoda: Insecta	Plecoptera	Perlidae	stoneflies	0.01276	1.404	0.1976	0.00323	0.1875	5 0.009612	0.01128	0.189					0.1879	0.2003
Periodidae	L	insect	Aquatio	Arthropoda: Insecta	Plecoptera	Perlodidae	stoneflies	0.5743	1.053	0.001017	0.00020	5	0.009612	0.1000	0.01040						0.000077
Isoperia	L	insect	Aquatio	Arthropoda: Insecta	Plecoptera	Periodidae	stoneflies	0.5743	1.053	0.1976	0.194	1 0.1875	5								
Skwala Pteronarcys californica	L.	insect	Aquatio	Arthropoda: Insecta	Plecoptera	Periodidae	stonefiles	0.01276	0.1754	0.1976	0.00323	5 0.01094	4 0.009612	0.01128	0.01046	0.007406		0 1847		0 1879	
Sialis	Ē	insect	Aquatio	Arthropoda: Insecta	Megaloptera	Sialidae	alderflies							0.01128							
Amiocentrus aspilus Brachycentrus oscidentalis	L	insect	Aquatio	Arthropoda: Insecta	Trichoptera	Brachycentridae	caddisflies	67	0.5263	0.979	0.194	1 0.5625	5 2.115	0 1022		0 4442	0.2008	0.01693	0.3999	0 1970	0 2002
Glossosoma	L	insect	Aquatio	Arthropoda: Insecta	Trichoptera	Glossosomatidae	caddisflies	4.786	3.684	0.3951	0.194	1 0.1875	5	0.1933		0.4445	0.2000	0.5250	0.5555	0.7515	0.6008
Glossosoma	P	insect	Aquatio	Arthropoda: Insecta	Trichoptera	Glossosomatidae	caddisflies	0.1914	0.1754	0.1976	0.194	1 0.375	5 0.1922		0.189						
Protoptila Goera archaon	L	insect	Aquatio	Arthropoda: Insecta	Trichoptera Trichoptera	Glossosomatidae Goeridae	caddisflies caddisflies	-				0.01094	4			0.2222			0.2		
Cheumatopsyche	Ĺ	insect	Aquatio	Arthropoda: Insecta	Trichoptera	Hydropsychidae	caddisflies		0.1754	0.9878	0.388	2									
Hydropsyche	L	insect	Aquatio	Arthropoda: Insecta	Trichoptera	Hydropsychidae	caddisflies	8.614	16.14	10.27	8.73	4 1.125	5 0.7689	0.7732	1.323		0.2008	3.51	1.6	6.388	6.609
Hydroptila	P	insect	Aquatio	c Arthropoda: Insecta	Trichoptera	Hydroptilidae	caddisfiles	0.1914		0.9878	0.776	4	0.1922				0.4015	0.1847	0.2		
Leucotrichia	L	insect	Aquatio	Arthropoda: Insecta	Trichoptera	Hydroptilidae	caddisflies			0.1976											
Lepidostoma (Neodinarthrum)	L	insect	Aquatio	Arthropoda: Insecta	Trichoptera	Lepidostomatidae	caddisflies	0.7657	2.807	1.185	0.776	4 8.062	2 6.536	2.513	5.669			1.847	5.999	0.9394	0.8011
Lepidostoma unicolor group	L	insect	Aquatio	Arthropoda: Insecta	Trichoptera	Lepidostomatidae	caddisflies	-		0.1870		0.1875	5 0.1922		0.189			0.1847	0.2		
Ceraclea	L	insect	Aquatio	Arthropoda: Insecta	Trichoptera	Leptoceridae	caddisflies	0.1914	0.1754	0.1976	0.00323	5 0.5625	5 0.3845	7.152	6.803			1.108	1.4	0.01253	0.008877
Psychomyla Rhyacophila arpaudi	L.	insect	Aquatio	Arthropoda: Insecta	I richoptera Trichoptera	Psychomylidae	caddisflies			0.1976	0.00323	5									
Rhyacophila brunnea/vemna group	L	insect	Aquatio	Arthropoda: Insecta	Trichoptera	Rhyacophilidae	caddisflies			0.004347	0.00323	5									
Rhyacophila coloradensis group	L	insect	Aquatio	Arthropoda: Insecta	Trichoptera	Rhyacophilidae	caddisflies			0.2054	0.200	- -	0.009612								
Petrophila	L	insect	Aquatio	Arthropoda: Insecta	Lepidoptera	Pyralidae	aquatic moths			0.004347	1.35	2 9 0.1875	5 0.1922					0.1847			
Narpus concolor	L	insect	Aquatio	Arthropoda: Insecta	Coleoptera	Elmidae	riffle beetles	0.1914	0.3509	0.004347	0.194	1 0.01094	4 0.3845	0.3866	0.189			0.3694	0.01167		
Optioservus	A	insect	Aquatio	Arthropoda: Insecta	Coleoptera	Elmidae	riffle beetles	1.531	1.579	0.7903	0.194	1 1.125 P 0.563	5 0.3845	0.3866	0.189	0.2222	1 606	4 422	0.2 5.000	0.1879	4 606
Zaitzevia	Ā	insect	Aquatio	Arthropoda: Insecta	Coleoptera	Elmidae	riffle beetles	13.40	0.474	0.915	0.194		0.1922	10.03	1.101	1.333	1.006	4.433	3.899	0.901	4.000
Zaitzevia	L	insect	Aquatio	Arthropoda: Insecta	Coleoptera	Elmidae	riffle beetles	0.9571	2.456	3.359	2.71	7 2.812	2 2.115	0.7732	0.7559			0.3694	0.5999	0.1879	0.2003
Atherix	Ê	insect	Aquatio	Arthropoda: Insecta	Diptera	Athericidae	higher flies	1						0.01128				U. 1047			
Chelifera/Metachela	L	insect	Aquatio	Arthropoda: Insecta	Diptera	Empididae	dance flies					0.1875	5								
Hemerodromia Psvchoda	L	insect	Aquatio	c Arthropoda: Insecta	Diptera	Emploidae Psychodidae	dance flies	1.723		0.3951	0.776	4.312	2 2.691	0.3866	0.5669	0 2222	2	0.1847	0.3999	0.3758	0.4006
Simulium	Ĺ	insect	Aquatio	Arthropoda: Insecta	Diptera	Simuliidae	black flies	0.5743		0.1976	0.194	1		2.513	0.5669	0.6665	0.6023	2.401	0.2	2.067	3.405
Simulium	P	insect	Aquatio	Arthropoda: Insecta	Diptera	Simuliidae	black flies		0.004	4 504		7 4.00	5 4.000	0.1933	0 000	0.0007	0.4045	2.4.*	4.0	4 070	0.2003
Cardiocladius	L	insect	Aquatio	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	1.149	2.201	1.301	2.71	1.125	5 1.922	4.440	0.189	0.0007	0.4015	3.14	1.0	1.127	3.405
Corynoneura	L	insect	Aquatio	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges						0.1922								
Cricotopus Cricotopus (Isocladius) type 1	-	insect	Aquatio	Arthropoda: Insecta	Diptera Diptera	Chironomidae: Orthocladiinae Chironomidae: Orthocladiinae	midges	2.68	1.93	3.556	1.55	3 1.312	2 0.9612	5.026	3.969	0.2222	0.2008	4.803	2.599	2.255	2.403
Cricotopus bicinctus group	L	insect	Aquatio	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges					0.1875	5					0.0004		0.1879	
Cricotopus (Nostococladius)	L	insect	Aquatio	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	2.489	1.754	7.705	18.6	3 20.06	5 11.34	0.3866	0.189			0.407	0.700		4 000
Cricotopus tritascia group Cryptochironomus	L.	insect	Aquatio	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae Chironomidae: Chironominae	midges			0.3951	1.16	5 0.1875	5	5.026	2.835	3.777	2.61	8.497	8.798	1.315	1.202
Diamesa	L	insect	Aquatio	Arthropoda: Insecta	Diptera	Chironomidae: Diamesinae	midges	0.7657	0.1754			0.375	5								
Eukiefferiella brehmi group	L	insect	Aquatio	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae Chironomidae: Orthocladiinae	midges	0.7657	0.5263	1.383	1.55	3 0.75	5 0.5767	0.2966	0.5660	0.4443	1.004	1.662	2 100	2.62	0.6008
Eukiefferiella devonica group	L	insect	Aquatio	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	0.9571	1.053	2.568	3.49	4 0.75	5 2.307	0.3866	0.189	1.555	0.8031	0.3694	0.7998	0.3758	0.8011
Eukiefferiella pseudomontana group	L	insect	Aquatio	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges											0.1847	_		0.2003
Micropsectra Microtendines pedellus group	L	insect	Aquatio	Arthropoda: Insecta	Diptera	Chironomidae: Chironominae: Tanytarsini Chironomidae: Chironominae	midges	6.508	4.912	1.383	0.5823	٥.1875 o	o 1.153	1.16	0.9449				0.2	0.5636	0.8011
Nanocladius	Ĺ	insect	Aquatio	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	0.1914						0.1000	0.378				0.2	0.0004	0.0011
Nilotanypus	L	insect	Aquatio	Arthropoda: Insecta	Diptera	Chironomidae: Tanypodinae	midges	0.007	4 570	· · · ·	4.000	o 4000	7 9.000	40.00	40.04	4 777	0.2008	40.50	E 200	4 004	0.001
Paratanytarsus	L	insect	Aquatio	c Arthropoda: Insecta	Diptera	Chironomidae: Chironominae: Tanvtarsini	midges	2.297	1.5/9	2.3/1	4.852	د 1.687 1	3.052	19.33	19.84	1.777	2.209	12.56	5.399	1.691	2.604
Paratendipes	L	insect	Aquatio	Arthropoda: Insecta	Diptera	Chironomidae: Chironominae	midges	1												0.1879	
Phaenopsectra Polypedilum	L	insect	Aquatio	Arthropoda: Insecta	Diptera	Chironomidae: Chironominae	midges	1 014	1 0 2	0.3051	0 104	1 0.976	5 2 307	0.1933	2 269	0.2222	2 200	2 217	0.2	2 440	2 402
Potthastia gaedii group	L	insect	Aquatio	Arthropoda: Insecta	Diptera	Chironomidae: Diamesinae	midges	1.014	0.1754	0.3951	0.194	. 0.375	5 0.1922	0.9665	2.200	2.000	2.209	0.1847	0.2	2.442	2.403
Potthastia longimana group	L	insect	Aquatio	Arthropoda: Insecta	Diptera	Chironomidae: Diamesinae	midges								0.189						0.400-
Rheotanytarsus	L	insect	Aquatio	Arthropoda: Insecta	Diptera	Chironomidae: Ortnociadiinae Chironomidae: Chironominae: Tanvtarcini	midaes	1			0 194	1	0 3845	0 1933	0.378				0.2		0.4006
Stenochironomus		incost	Aquatic	Arthropoda: Incosta	Diptora	Chironomidae: Chironominae	midaos	1			2.104	0 1976	5	2000					0.1		

							Waterbody	Rogue River													
							Station	1	1	2	2	3	3	4	4	5	5	6	6	7	7
							Date	2018-10-04	2018-10-04	2018-10-03	2018-10-03	2018-10-05	2018-10-05	2018-10-04	2018-10-04	2018-10-05	2018-10-05	2018-10-04	2018-10-04	2018-10-05	2018-10-05
							Replicate	A	в	A	в	A	в	A	в	A	в	A	в	A	в
Taxon	Stage	Insect?	Origin	Higher classification	Order	Family	Common name	% abundance													
Synorthocladius	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges		0.175	4		1.	5 0.961	2 0.966	5 0.755	9 0.666	5 0.401	5 0.7389) 1.	4 1.31	5 0.2003
Tanytarsus	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Chironominae: Tanytarsini	midges														0.4006
Thienemanniella	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges			0.197	6 0.194	1 0.187	5 0.576	7			0.200	3		0.187	9
Thienemannimyia complex	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Tanypodinae	midges								0.18	9					
Tvetenia bavarica group	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges		0.175	4											
Tvetenia vitracies group	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges				0.194	1			0.18	9				0.939	4 0.4006

Waterbody	Station	Date	Replicate	Taxon	Stage	Insect	Origin	Higher.classification	Order	Family	Common.name	Abundance
Rogue River	2	2018-10-03	А	Petrophila	L	insect	Aquatic	Arthropoda: Insecta	Lepidoptera	Pyralidae	aquatic moths	1.345
Rogue River	2	2018-10-03	Α	Simulium	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Simuliidae	black flies	61.13025
Roque River	2	2018-10-03	А	Brachycentrus occidentalis	L	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Brachycentridae	caddisflies	3056.5125
Roque River	2	2018-10-03	А	Glossosoma	L	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Glossosomatidae	caddisflies	122.2605
Roque River	2	2018-10-03	А	Glossosoma	Р	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Glossosomatidae	caddisflies	61.13025
Roque River	2	2018-10-03	А	Cheumatopsyche	L	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Hydropsychidae	caddisflies	305.65125
Roque River	2	2018-10-03	А	Hydropsyche	L	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Hvdropsvchidae	caddisflies	3178.773
Roque River	2	2018-10-03	А	Hydroptila	L	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Hydroptilidae	caddisflies	305.65125
Roque River	2	2018-10-03	А	Leucotrichia	L	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Hydroptilidae	caddisflies	61.13025
Roque River	2	2018-10-03	А	Lepidostoma (Neodinarthrum)	L	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Lepidostomatidae	caddisflies	366.7815
Roque River	2	2018-10-03	А	Lepidostoma-panel case larvae	L	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Lepidostomatidae	caddisflies	61,13025
Roque River	2	2018-10-03	А	Ceraclea	L	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Leptoceridae	caddisflies	61,13025
Roque River	2	2018-10-03	А	Psychomyia	L	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Psychomviidae	caddisflies	61,13025
Roque River	2	2018-10-03	А	Rhvacophila brunnea/vemna group	L	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Rhvacophilidae	caddisflies	1.345
Roque River	2	2018-10-03	А	Rhyacophila malkini	Р	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Rhvacophilidae	caddisflies	122,2605
Roque River	2	2018-10-03	A	Hemerodromia	i	insect	Aquatic	Arthropoda: Insecta	Diptera	Empididae	dance flies	122 2605
Roque River	2	2018-10-03	A	Trepaxonemata	Ū	non-insect	Aquatic	Turbellaria	miscellaneous non-insect	x	flat worms	305.65125
Roque River	2	2018-10-03	A	Acentrella insignificans	ĩ	insect	Aquatic	Arthropoda: Insecta	Ephemeroptera	Baetidae	mavflies	122 2605
Roque River	2	2018-10-03	A	Baetis tricaudatus complex	Ē	insect	Aquatic	Arthropoda: Insecta	Ephemeroptera	Baetidae	mavflies	1528,25625
Roque River	2	2018-10-03	Δ	Drunella grandis	-	insect	Aquatic	Arthropoda: Insecta	Enhemerontera	Enhemerellidae	mayflies	1 345
Roque River	2	2018-10-03	Δ	Enhemerella excrucians group	ī	insect	Aquatic	Arthropoda: Insecta	Ephemeroptera	Ephemerellidae	mayflies	2445 21
Roque River	2	2018-10-03	A	Ephemerella tibialis	1	insect	Aquatic	Arthropoda: Insecta	Ephemeroptera	Ephemerellidae	mayflies	1 345
Roque River	2	2018-10-03	A	Epeorus	1	insect	Aquatic	Arthropoda: Insecta	Ephemeroptera	Hentageniidae	mayflies	305 65125
Roque River	2	2018-10-03	Δ	Bhithrogena	ī	insect	Aquatic	Arthropoda: Insecta	Ephemeroptera	Hentageniidae	mayflies	61 13025
Roque River	2	2018-10-03	Δ	Chironomidae	P	insect	Aquatic	Arthropoda: Insecta	Dintera	Chironomidae	midaes	489 042
Roque River	2	2018-10-03	Δ	Polypedilum	÷	insect		Arthropoda: Insecta	Diptera	Chironomidae: Chironominae	midges	122 2605
Roque River	2	2018-10-03	Δ	Micropsectra	1	insect		Arthropoda: Insecta	Diptera	Chironomidae: Chironominae: Tanytarsini	midges	/27 01175
Roque River	2	2018-10-03	Δ	Potthastia gaedii group	1	insect		Arthropoda: Insecta	Diptera	Chironomidae: Diamesinae	midges	122 2605
Roque River	2	2018-10-03	Δ	Cricotopus	1	insect		Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	1100 3445
Rogue River	2	2018 10 03	^	Cricotopus (Nestococladius)	1	insoct	Aquatic	Arthropoda: Insecta	Diptora	Chironomidae: Orthocladiinae	midges	2384 07075
Rogue River	2	2018 10 03	^	Cricotopus (Nosiocociaulus)	1	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	122 2605
Rogue River	2	2018 10 03	^	Eukiofforialla brobmi group	1	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	122.2003
Rogue River	2	2018 10 03	^	Eukiefferiella claripoppis group	1	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	427.91173
Rogue River	2	2018 10 03	^	Eukiefferiella devenica group	1	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	704 60325
Rogue River	2	2010-10-03	~	Orthoolodius		insect	Aquatio	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	722 562
Rogue River	2	2018-10-03	A	Thionomonniallo	L 1	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	133.303
Rogue River	2	2018-10-03	A	Labortia		non incost	Aquatic	Artinopoua. Insecta	Diptera		mitas	490.042
Rogue River	2	2018-10-03	A	Sporehon		non insect	Aquatic	Arachinida: Acan	X	X	mites	409.04Z
Rogue River	2	2018-10-03	A	Sperchonopoio		non insect	Aquatic	Arachinida: Acan	X	X	mites	61 12025
Rogue River	2	2010-10-03	~	Breatoma		non insect	Aquatio	Anacilida: Acall	A minantinanation non-incont	A Totrastammatidaa	nomortoono	61 12025
Rogue River	2	2018-10-03	A	Optiocon/up	^	incost	Aquatic	Arthropodo: Incosto	Colooptoro	Elmidee	riffle beetlee	01.13023
Rogue River	2	2018-10-03	A	Norpus concelor	Ä	insect	Aquatic	Arthropoda: Insecta	Coleoptera	Elmidae	riffle beetles	244.321
Rogue River	2	2018-10-03	A	Optiocon/up	L 1	insect	Aquatic	Arthropoda: Insecta	Coleoptera	Elmidae	riffle beetles	2120 55075
Rogue River	2	2018 10 03	^	Zaitzovia	1	insect	Aquatic	Arthropoda: Insecta	Coleoptera	Elmidae	riffle beetles	1030 21/25
Rogue River	2	2010-10-03	~	Nemete		non incost	Aquatio	Antiliopoda: Ilisecta		Liniuae	round wormo	61 12025
Rogue River	2	2018-10-03	A	Oligophoeto		non insect	Aquatic	Appolido: Oligophooto	miscellaneous non-insect	X		61.13023 E106.0712E
Rogue River	2	2018-10-03	A	lugo		non insect	Aquatic	Molluoso: Costropodo		X Diouroporidoo	segmented worms	205 65125
Rogue River	2	2018-10-03	A A	Juga Classonia sabulosa	U I	incoct	Aquatic	Arthropoda: Insocta	x Placantara	Perlidae	stanoflios	61 13025
Rogue River	2	2018 10 03	^		1	insect	Aquatic	Arthropoda: Insecta	Plecoptera	Perlidae	stoneflies	1 3/15
Rogue River	2	2010-10-03	^	Isoporta	1	insoct	Aquatic	Arthropoda: Insecta	Plecoptora	Periodidae	stoneflies	61 13025
Rogue River	2	2018-10-03	A A	Skyala	L 1	insect	Aquatic	Arthropoda: Insecta	Plecoptera	Periodidae	stoneflies	61 13025
Rogue River	2	2018-10-03	A	Skwala Btoroporovo colifornico	L 1	insect	Aquatic	Arthropoda: Insecta	Plecoptera	Periodidae	stoneflies	1 245
Rogue River	1	2018 10 04	^	Simulium	1	insect	Aquatic	Arthropoda: Insecta	Diptora	Simuliidaa	black flips	60 525
Rogue River	1	2018 10 04	^	Brachycontrus occidentalis	1	insect	Aquatic	Arthropoda: Insecta	Trichontora	Brachycontridae	caddicflics	706 125
Rogue River	1	2010-10-04	~	Classes		insect	Aquatio	Arthropoda: Insecta	Trichoptera	Classesemetides	caudisilies	F04.275
Rogue River	1	2018-10-04	A	Glossosoma	L	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Glossosomatidae	caddisflies	004.375 20.175
Rogue River	1	2018-10-04	A	Giossosoma	P	insect	Aquatic	Arthropoda: Insecta		Giossosomalidae	caddisilles	20.175
Rogue River	1	2018-10-04	A	Hydropsyche	L .	insect	Aquatic	Arthropoda: Insecta		Hydropsychidae	caddisilles	907.875
Rogue River	1	2018-10-04	A	Lanidastama (Naadinarthrum)	L 1	insect	Aquatic	Arthropoda: Insecta	Trichoptera		caddisflies	20.173
Rogue River	1	2010-10-04	^		L .	insect	Aquatic	Arthropoda: Insecta	Trichontoro		caudioflice	00./
Rogue River	1	2010-10-04	A	Geraciea Homorodromio	L.	insect	Aquatic	Arthropoda: Insecta	Dintore	Empididae	dance flice	20.175
Rogue River	1	2010-10-04	A		L.	insect	Aquatic	Arthropoda: Insecta	Diplera	Empluluae	uance mes	101.5/5
Rogue River	1	2010-10-04	~	Acentrena Insignificans	L 1	insect	Aquation	Arthropoda: Insecta	Ephemoroptera	Daeliuae	mayilles	40.35
Rogue River	1	2010-10-04	^	Daeus incaudatus complex	L .	insect	Aquatic	Arthropoda: Insecta	Ephomoroptera	Enhomorallidae	mayilles	404.025
Rogue River	1	2010-10-04	^	Enhomorollo everueizza arreita	L .	insect	Aquatic	Arthropoda: Insecta		Ephomorallidae	mayilles	00.525
Rogue River	1	2018-10-04	A	Ephemoralla excrucians group	L	insect	Aquatic	Arthropoda: Insecta	Ephemeroptera	Ephemerellidae	mayfiles	908.4
Rogue River	1	2010-10-04	A	Epiternerella libialis	L.	insect	Aquatic	Arthropoda: Insecta			mayilles	1.345
Rogue River	1	2010-10-04	A	Epeorus	L.	insect	Aquatic	Arthropoda: Insecta		neplagenilloae	mayilles	20.175
Rogue River	1	2010-10-04	A	Rinningena	L	insect	Aqualic	Annopoda: insecta	Ephemeroplera	пертаденицае	maymes	101.5/5

Waterbody	Station	Date	Replicate	Taxon	Stage	Insect	Origin	Higher.classification	Order	Family	Common.name	Abundance
Rogue River	1	2018-10-04	А	Chironomidae	Р	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae	midges	121.05
Rogue River	1	2018-10-04	А	Polypedilum	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Chironominae	midges	201.75
Rogue River	1	2018-10-04	А	Micropsectra	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Chironominae: Tanytarsini	midges	685.95
Roque River	1	2018-10-04	А	Diamesa	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Diamesinae	midges	80.7
Roque River	1	2018-10-04	А	Cricotopus	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	middes	282.45
Roque River	1	2018-10-04	A	Cricotopus (Nostococladius)	1	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	262 275
Roque River	1	2018-10-04	Δ	Eukiefferiella brehmi group	- I	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midaes	80.7
Roque River	1	2018-10-04	Δ	Eukiefferiella clarinennis group	1	insect		Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	322.8
Pogue River	1	2010-10-04	^	Eukiefferiella devenica group	1	insect	Aquatic	Arthropoda: Insecta	Diptora	Chironomidae: Orthocladiinae	midges	100 975
Rogue River	4	2010-10-04	~	Neneeledius		insect	Aquatic	Arthropoda, Insecta	Diptera	Chironomidae. Orthocladiinae	midges	00.075
	4	2010-10-04	A	Otherladius	L .	insect	Aquatic	Arthropoda. Insecta	Diptera	Chironomidae. Orthogladiinae	midges	20.175
Rogue River		2018-10-04	A	Attaction	L.	insect	Aquatic	Annopoda: Insecta	Dipiera	Chironomidae: Orthocladiinae	mages	242.1
Rogue River	1	2018-10-04	A	Atractides	0	non-insect	Aquatic	Arachnida: Acari	x	X	mites	20.175
Rogue River	1	2018-10-04	A	Lebertia	U	non-insect	Aquatic	Arachnida: Acari	x	x	mites	322.8
Rogue River	1	2018-10-04	A	Protzia	U	non-insect	Aquatic	Arachnida: Acari	x	x	mites	20.175
Rogue River	1	2018-10-04	A	Sperchon	U	non-insect	Aquatic	Arachnida: Acari	x	X	mites	464.025
Rogue River	1	2018-10-04	A	Prostoma	U	non-insect	Aquatic	Annelida: Nemertea	miscellaneous non-insect	Tetrastemmatidae	nemerteans	20.175
Rogue River	1	2018-10-04	A	Optioservus	A	insect	Aquatic	Arthropoda: Insecta	Coleoptera	Elmidae	riffle beetles	161.4
Rogue River	1	2018-10-04	A	Narpus concolor	L	insect	Aquatic	Arthropoda: Insecta	Coleoptera	Elmidae	riffle beetles	20.175
Rogue River	1	2018-10-04	A	Optioservus	L	insect	Aquatic	Arthropoda: Insecta	Coleoptera	Elmidae	riffle beetles	1735.05
Rogue River	1	2018-10-04	A	Zaitzevia	L	insect	Aquatic	Arthropoda: Insecta	Coleoptera	Elmidae	riffle beetles	100.875
Rogue River	1	2018-10-04	А	Nemata	U	non-insect	Aquatic	Nemata	miscellaneous non-insect	х	round worms	20.175
Rogue River	1	2018-10-04	А	Oligochaeta	U	non-insect	Aquatic	Annelida: Oligochaeta	miscellaneous non-insect	Х	segmented worms	685.95
Rogue River	1	2018-10-04	А	Juga	U	non-insect	Aquatic	Mollusca: Gastropoda	х	Pleuroceridae	snails	1.345
Roque River	1	2018-10-04	А	Sweltsa	L	insect	Aquatic	Arthropoda: Insecta	Plecoptera	Chloroperlidae	stoneflies	100.875
Roque River	1	2018-10-04	А	Calineuria californica	1	insect	Aquatic	Arthropoda: Insecta	Plecoptera	Perlidae	stoneflies	100 875
Roque River	1	2018-10-04	A	Claassenia sabulosa	1	insect	Aquatic	Arthropoda: Insecta	Plecoptera	Perlidae	stoneflies	1 345
Roque River	1	2018-10-04	Δ	Hesperoperla pacifica	1	insect	Aquatic	Arthropoda: Insecta	Plecontera	Perlidae	stoneflies	1 345
Roque River	1	2018-10-04	Δ	Isoperla	1	insect		Arthropoda: Insecta	Plecontera	Perlodidae	stoneflies	60 525
Roque River	1	2018-10-04	Δ	Periodidae	1	insect		Arthropoda: Insecta	Plecontera	Periodidae	stoneflies	60.525
Rogue River	1	2010-10-04	^	Skwolo		inacot	Aquatio	Arthropoda: Insecta	Blacentera	Periodidae	stoneflica	1 245
Rogue River	1	2010-10-04	A	Okwala Diaranarava aalifarniaa	1	insect	Aquatio	Arthropoda: Insecta	Plecoptera	Periodidae	stoneflies	1.343
	4	2010-10-04	A		L .	insect	Aquatic	Arthropoda. Insecta	Magalantara	Cialidae	stonenies	1.343
Rogue River	4	2018-10-04	A	Sialis	L .	insect	Aquatic	Anthropoda: Insecta	Niegalopiera		aldernies	1.345
Rogue River	4	2018-10-04	A	Simulum	L	insect	Aquatic	Anthropoda: Insecta	Diptera		DIACK IIIES	299.0929
Rogue River	4	2018-10-04	A	Simulium	P	Insect	Aquatic	Arthropoda: Insecta	Diptera	Simulidae	DIACK TILES	23.0533
Rogue River	4	2018-10-04	A	Brachycentrus occidentalis	L	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Brachycentridae	caddisflies	23.0533
Rogue River	4	2018-10-04	A	Glossosoma	L	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Glossosomatidae	caddisflies	23.0533
Rogue River	4	2018-10-04	A	Hydropsyche	L	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Hydropsychidae	caddisflies	92.2132
Rogue River	4	2018-10-04	A	Lepidostoma (Neodinarthrum)	L	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Lepidostomatidae	caddisflies	299.6929
Rogue River	4	2018-10-04	A	Ceraclea	L	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Leptoceridae	caddisflies	852.9721
Rogue River	4	2018-10-04	A	Hemerodromia	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Empididae	dance flies	46.1066
Rogue River	4	2018-10-04	А	Trepaxonemata	U	non-insect	Aquatic	Turbellaria	miscellaneous non-insect	х	flat worms	783.8122
Rogue River	4	2018-10-04	А	Atherix	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Athericidae	higher flies	1.345
Rogue River	4	2018-10-04	А	Acentrella insignificans	L	insect	Aquatic	Arthropoda: Insecta	Ephemeroptera	Baetidae	mayflies	92.2132
Roque River	4	2018-10-04	А	Baetis tricaudatus complex	L	insect	Aquatic	Arthropoda: Insecta	Ephemeroptera	Baetidae	mayflies	299.6929
Roque River	4	2018-10-04	А	Ephemerella excrucians group	L	insect	Aquatic	Arthropoda: Insecta	Ephemeroptera	Ephemerellidae	mavflies	1314.0381
Roque River	4	2018-10-04	A	Chironomidae	P	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae	middes	530 2259
Roque River	4	2018-10-04	Δ	Microtendines nedellus group	i	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Chironominae	midaes	23 0533
Roque River	4	2018-10-04	Δ	Phaenonsectra	- I	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Chironominae	midaes	23 0533
Roque River	4	2018-10-04	Δ	Polypedilum	- I	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Chironominae	midaes	161 3731
Poguo Pivor	4	2018 10 04	^	Micropsoctra	1	incoct	Aquatic	Arthropoda: Insecta	Diptora	Chironomidae: Chironominae: Tanytarsini	midges	139 3109
Rogue River	4	2010-10-04	^	Phoetanytarsus	1	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Chironominae: Tanytarsini	midges	23 0533
Rogue River	4	2010-10-04	~	Dotthootia goodii group	1	insect	Aquatio	Arthropoda: Insecta	Diptera	Chironomidae: Chironominae: Tanytaisini Chironomidae: Diamosinae	midges	115 2665
	4	2010-10-04	A	Criestenus	L .	insect	Aquatic	Arthropoda. Insecta	Diptera	Chironomidae. Diamesinae	midges	115.2005
Rogue River	4	2018-10-04	A	Cricotopus	L .	insect	Aquatic	Anthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	mages	599.3656
Rogue River	4	2018-10-04	A	Cricotopus (Nostocociadius)	L	Insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthociadiinae	miages	46.1066
Rogue River	4	2018-10-04	A	Cricotopus trifascia group	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	599.3858
Rogue River	4	2018-10-04	A	Eukiefferiella claripennis group	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	46.1066
Rogue River	4	2018-10-04	A	Eukiefferiella devonica group	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	46.1066
Rogue River	4	2018-10-04	A	Orthocladius	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	2305.33
Rogue River	4	2018-10-04	A	Synorthocladius	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	115.2665
Rogue River	4	2018-10-04	A	Atractides	U	non-insect	Aquatic	Arachnida: Acari	х	х	mites	23.0533
Rogue River	4	2018-10-04	А	Lebertia	U	non-insect	Aquatic	Arachnida: Acari	x	х	mites	46.1066
Rogue River	4	2018-10-04	А	Oribatida	U	non-insect	Aquatic	Arachnida: Acari	x	x	mites	23.0533
Rogue River	4	2018-10-04	А	Sperchon	U	non-insect	Aquatic	Arachnida: Acari	x	x	mites	46.1066
Roque River	4	2018-10-04	А	Sperchonopsis	U	non-insect	Aquatic	Arachnida: Acari	x	х	mites	23.0533
Roque River	4	2018-10-04	A	Psychoda	Ĩ	insect	Aquatic	Arthropoda: Insecta	Diptera	Psychodidae	moth flies	46 1066
Roque River	4	2018-10-04	A	Prostoma	ū	non-insect	Aquatic	Annelida: Nemertea	miscellaneous non-insect	Tetrastemmatidae	nemerteans	46 1066
Roque River	4	2018-10-04	A	Sphaeriidae	ŭ	non-insect	Aquatic	Mollusca: Bivalvia	X	Sphaeriidae	nea clams	46 1066
Roque River	4	2018_10_0/	Δ	Ontioservus	Ā	insect		Arthronoda: Incorta	Coleontera	Flmidae	riffle heetlee	46 1066
rogue rivel	-	2010-10-04	~	Optiosol vus	~	113001	Aqualic	Annopoua. Insecia	ooleoptera	Liniuas	Time Declies	40.1000

Waterbody	Station	Date	Replicate	Taxon	Stage	Insect	Origin	Higher.classification	Order	Family	Common.name	Abundance
Rogue River	4	2018-10-04	А	Narpus concolor	L	insect	Aquatic	Arthropoda: Insecta	Coleoptera	Elmidae	riffle beetles	46.1066
Roque River	4	2018-10-04	А	Optioservus	L	insect	Aquatic	Arthropoda: Insecta	Coleoptera	Elmidae	riffle beetles	1267.9315
Roque River	4	2018-10-04	А	Zaitzevia	L	insect	Aquatic	Arthropoda: Insecta	Coleoptera	Elmidae	riffle beetles	92.2132
Roque River	4	2018-10-04	А	Nemata	U	non-insect	Aquatic	Nemata	miscellaneous non-insect	х	round worms	69.1599
Roque River	4	2018-10-04	А	Ostracoda	Ū	non-insect	Aquatic	Crustacea: Ostracoda	x	x	seed shrimp	92,2132
Roque River	4	2018-10-04	A	Oligochaeta	ũ	non-insect	Aquatic	Annelida: Oligochaeta	miscellaneous non-insect	x	segmented worms	1014 3452
Roque River	4	2018-10-04	Δ	Lanx	ŭ	non-insect	Aquatic	Mollusca: Gastropoda	Y	l vmnaeidae	snails	1 345
Roque River	1	2018-10-04	Δ	Helisoma	й П	non-insect		Mollusca: Gastropoda	x x	Planorbidae	enaile	1 3/15
Rogue River	4	2018 10 04	^	luga		non insoct	Aquatic	Mollusca: Castropoda	~	Plaurocaridaa	enaile	46 1066
Rogue River	4	2010-10-04	~	Glassenia sekulase		incont	Aquatic	Arthrene des Inceste	A Dia sentena	Pieurocenuae	stansfling	40.1000
	4	2018-10-04	A			insect	Aquatic	Arthropoua. Insecta	Plecoptera	Perlidee	stoneflies	1.340
Rogue River	4	2018-10-04	A	Hesperoperia pacifica	L .	Insect	Aquatic	Anthropoda: Insecta	Plecoplera	Penidae	stonellies	23.0533
Rogue River	4	2018-10-04	A	Pteronarcys californica	L	insect	Aquatic	Arthropoda: Insecta	Plecoptera	Pteronarcyidae	stoneflies	1.345
Rogue River	6	2018-10-04	A	Petrophila	L	insect	Aquatic	Arthropoda: Insecta	Lepidoptera	Pyralidae	aquatic moths	14.67395
Rogue River	6	2018-10-04	A	Simulium	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Simuliidae	black flies	190.76135
Rogue River	6	2018-10-04	A	Amiocentrus aspilus	L	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Brachycentridae	caddisflies	1.345
Rogue River	6	2018-10-04	A	Brachycentrus occidentalis	L	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Brachycentridae	caddisflies	73.36975
Rogue River	6	2018-10-04	A	Hydropsyche	L	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Hydropsychidae	caddisflies	278.80505
Rogue River	6	2018-10-04	А	Hydroptila	L	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Hydroptilidae	caddisflies	14.67395
Roque River	6	2018-10-04	А	Lepidostoma (Neodinarthrum)	L	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Lepidostomatidae	caddisflies	146.7395
Roque River	6	2018-10-04	А	Lepidostoma unicolor group	L	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Lepidostomatidae	caddisflies	14.67395
Roque River	6	2018-10-04	Δ	Ceraclea	ī	insect	Aquatic	Arthropoda: Insecta	Trichontera	Lentoceridae	caddisflies	88 0437
Roque River	6	2018-10-04	Δ	Hemerodromia	1	insect		Arthropoda: Insecta	Diptera	Empididae	dance flies	1/ 67305
Rogue River	6	2018 10 04	^	Tropayonomata	ц.	non incoct	Aquatic	Turbollaria	miscellaneous non insect		flat worms	880 437
Rogue River	6	2010-10-04	~		i i	incost	Aquatio	Arthropodo: Incosto	Enhamorantora	A Restides	may flice	E0 60E0
	0	2010-10-04	Ä		L.	insect	Aqualic	Antiriopoua. Insecta	Ephemeroplera	Baelidae	mayilles	00.0900
Rogue River	6	2018-10-04	A	Baetis tricaudatus complex	L	Insect	Aquatic	Arthropoda: Insecta	Epnemeroptera	Baetidae	mayfiles	132.06555
Rogue River	6	2018-10-04	A	Drunella grandis	L	insect	Aquatic	Arthropoda: Insecta	Ephemeroptera	Ephemerellidae	mayflies	1.345
Rogue River	6	2018-10-04	A	Ephemerella excrucians group	L	insect	Aquatic	Arthropoda: Insecta	Ephemeroptera	Ephemerellidae	mayflies	234.7832
Rogue River	6	2018-10-04	A	Ephemerella tibialis	L	insect	Aquatic	Arthropoda: Insecta	Ephemeroptera	Ephemerellidae	mayflies	1.345
Rogue River	6	2018-10-04	A	Epeorus	L	insect	Aquatic	Arthropoda: Insecta	Ephemeroptera	Heptageniidae	mayflies	14.67395
Rogue River	6	2018-10-04	A	Chironomidae	Р	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae	midges	249.45715
Rogue River	6	2018-10-04	А	Polypedilum	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Chironominae	midges	176.0874
Roque River	6	2018-10-04	А	Potthastia gaedii group	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Diamesinae	midges	14.67395
Roque River	6	2018-10-04	А	Cricotopus	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midaes	381.5227
Roque River	6	2018-10-04	А	Cricotopus (Isocladius) type 1	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midaes	29.3479
Roque River	6	2018-10-04	Δ	Cricotopus trifascia group	1	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midaes	675 0017
Rogue River	6	2018 10 04	^	Eukiefferiella clarinonnis group	1	insoct	Aquatic	Arthropoda: Insocta	Diptera	Chironomidae: Orthocladiinae	midges	132 06555
Rogue River	6	2010-10-04	~	Eukiefferielle deveniee group	1	insect	Aquatio	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	20 2470
Rogue River	0	2018-10-04	A	Eukienenena devonica group	L .	Insect	Aquatic	Anthropoda: Insecta	Diptera	Chironomidae: Onnociadimae	midges	29.3479
Rogue River	0	2018-10-04	A	Euklehenena pseudomontana group	L .	Insect	Aquatic	Anthropoda: Insecta	Diptera	Chironomidae: Onnociadimae	midges	14.07395
Rogue River	6	2018-10-04	A	Orthociadius	L	Insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	miages	997.8286
Rogue River	6	2018-10-04	A	Synorthocladius	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	58.6958
Rogue River	6	2018-10-04	A	Lebertia	U	non-insect	Aquatic	Arachnida: Acari	х	х	mites	14.67395
Rogue River	6	2018-10-04	A	Sperchon	U	non-insect	Aquatic	Arachnida: Acari	x	x	mites	58.6958
Rogue River	6	2018-10-04	A	Sperchonopsis	U	non-insect	Aquatic	Arachnida: Acari	x	x	mites	58.6958
Rogue River	6	2018-10-04	A	Torrenticola	U	non-insect	Aquatic	Arachnida: Acari	х	х	mites	29.3479
Rogue River	6	2018-10-04	А	Hydraena	A	insect	Aquatic	Arthropoda: Insecta	Coleoptera	Hydraenidae	moss beetles	14.67395
Roque River	6	2018-10-04	А	Prostoma	U	non-insect	Aquatic	Annelida: Nemertea	miscellaneous non-insect	Tetrastemmatidae	nemerteans	29.3479
Roque River	6	2018-10-04	А	Narpus concolor	L	insect	Aquatic	Arthropoda: Insecta	Coleoptera	Elmidae	riffle beetles	29.3479
Roque River	6	2018-10-04	А	Optioservus	L	insect	Aquatic	Arthropoda: Insecta	Coleoptera	Elmidae	riffle beetles	352,1748
Roque River	6	2018-10-04	А	Zaitzevia	L	insect	Aquatic	Arthropoda: Insecta	Coleoptera	Elmidae	riffle beetles	29.3479
Roque River	6	2018-10-04	Δ	Nemata	ū	non-insect	Aquatic	Nemata	miscellaneous non-insect	Y	round worms	29 3479
Roque River	6	2018-10-04	Δ	Crangonyx	й П	non-insect		Crustacea: Amphipoda	v	Crangonyctidae	scude	1/6 7305
Rogue River	6	2018 10 04	^	Ostracoda		non insoct	Aquatic	Crustacca: Ampripoda	*	v	sood shrimp	117 3016
Rogue River	6	2010-10-04	~	Oligophosto		non incost	Aquatio	Appolido: Oligophoeto	A miacollonoouo non incost	× .	seeu siininp	1004 00505
	0	2010-10-04	A	Dhuanla	0	non-insect	Aquatic	Malluage: Castronada	miscellaneous non-insect	X Dhuaidea	segmented worms	1004.09000
Rogue River	6	2018-10-04	A	Physella	0	non-insect	Aquatic	Mollusca: Gastropoda	x	Physidae	snalls	264.1311
Rogue River	6	2018-10-04	A	Juga	U	non-insect	Aquatic	Mollusca: Gastropoda	x	Pleuroceridae	snails	29.3479
Rogue River	6	2018-10-04	A	Calineuria californica	L	insect	Aquatic	Arthropoda: Insecta	Plecoptera	Perlidae	stoneflies	1.345
Rogue River	6	2018-10-04	A	Pteronarcys californica	L	insect	Aquatic	Arthropoda: Insecta	Plecoptera	Pteronarcyidae	stoneflies	14.67395
Rogue River	3	2018-10-05	A	Petrophila	L	insect	Aquatic	Arthropoda: Insecta	Lepidoptera	Pyralidae	aquatic moths	23.0533
Rogue River	3	2018-10-05	A	Amiocentrus aspilus	L	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Brachycentridae	caddisflies	69.1599
Rogue River	3	2018-10-05	А	Brachycentrus occidentalis	L	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Brachycentridae	caddisflies	253.5863
Rogue River	3	2018-10-05	А	Glossosoma	L	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Glossosomatidae	caddisflies	23.0533
Roque River	3	2018-10-05	А	Glossosoma	Р	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Glossosomatidae	caddisflies	46,1066
Roque River	3	2018-10-05	А	Goera archaon	L	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Goeridae	caddisflies	1.345
Roque River	3	2018-10-05	A	Hydropsyche	Ē	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Hydropsychidae	caddisflies	138 3198
Roque River	3	2018-10-05	Δ	Lenidostoma (Neodinarthrum)	-	insect		Arthropoda: Insecto	Trichontera	Lenidostomatidae	caddieflies	001 2010
Roque Divor	3	2018-10-03	Δ	Lepidostoma unicolor group	-	insoct	Aquatic	Arthropoda: Insecta	Trichontera	Lenidostomatidae	caddisflies	22 0522
Rogue River	5	2010-10-00	~	Carooloo	-	insect	Aquatio	Arthropoda: Insecta	Trichoptera	Leptostomatidae	caudisilies	23.0033
Rogue River	3	2010-10-05	~		L .	insect	Aqualic	Arthrepode, Insecta	Distas			09.1599
Rogue River	3	2010-10-05	А	Chemera/wetacheia	L	msec(Aquatic	Anniopoda: Insecta	Diptera	Emploidae	uance mes	23.0533

Waterbody	Station	Date	Replicate	Taxon	Stage	Insect	Origin	Higher.classification	Order	Family	Common.name	Abundance
Rogue River	3	2018-10-05	А	Hemerodromia	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Empididae	dance flies	530.2259
Rogue River	3	2018-10-05	A	Trepaxonemata	U	non-insect	Aquatic	Turbellaria	miscellaneous non-insect	x	flat worms	69.1599
Rogue River	3	2018-10-05	А	Acentrella insignificans	L	insect	Aquatic	Arthropoda: Insecta	Ephemeroptera	Baetidae	mayflies	23.0533
Rogue River	3	2018-10-05	А	Baetis tricaudatus complex	L	insect	Aquatic	Arthropoda: Insecta	Ephemeroptera	Baetidae	mayflies	138.3198
Rogue River	3	2018-10-05	А	Drunella grandis	L	insect	Aquatic	Arthropoda: Insecta	Ephemeroptera	Ephemerellidae	mayflies	1.345
Roque River	3	2018-10-05	А	Ephemerella excrucians group	L	insect	Aquatic	Arthropoda: Insecta	Ephemeroptera	Ephemerellidae	mayflies	530.2259
Roque River	3	2018-10-05	А	Ephemerella tibialis	L	insect	Aquatic	Arthropoda: Insecta	Ephemeroptera	Ephemerellidae	mayflies	1.345
Rogue River	3	2018-10-05	А	Cinygma	L	insect	Aquatic	Arthropoda: Insecta	Ephemeroptera	Heptageniidae	mayflies	69.1599
Rogue River	3	2018-10-05	А	Epeorus	L	insect	Aquatic	Arthropoda: Insecta	Ephemeroptera	Heptageniidae	mayflies	184.4264
Roque River	3	2018-10-05	А	Rhithrogena	L	insect	Aquatic	Arthropoda: Insecta	Ephemeroptera	Heptageniidae	mavflies	69.1599
Roque River	3	2018-10-05	А	Leptophlebiidae	L	insect	Aquatic	Arthropoda: Insecta	Ephemeroptera	Leptophlebiidae	mavflies	46.1066
Roque River	3	2018-10-05	А	Chironomidae	Р	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae	midaes	138,3198
Roque River	3	2018-10-05	А	Polypedilum	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Chironominae	midaes	46,1066
Roque River	3	2018-10-05	А	Stenochironomus	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Chironominae	midaes	23.0533
Roque River	3	2018-10-05	А	Micropsectra	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Chironominae: Tanvtarsini	midaes	23.0533
Roque River	3	2018-10-05	A	Diamesa	Ē	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Diamesinae	midges	46.1066
Roque River	3	2018-10-05	A	Potthastia gaedii group	Ē	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Diamesinae	midaes	23.0533
Roque River	3	2018-10-05	A	Cricotopus	Ē	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	161.3731
Roque River	3	2018-10-05	A	Cricotopus (Nostococladius)	Ē	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midaes	2466.7031
Roque River	3	2018-10-05	A	Cricotopus bicinctus group	-	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midaes	23 0533
Roque River	3	2018-10-05	A	Cricotopus trifascia group	- I	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	middes	23 0533
Roque River	3	2018-10-05	A	Eukiefferiella brehmi group	- I	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	middes	92 2132
Roque River	3	2018-10-05	A	Eukiefferiella claripennis group	- I	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	middes	299 6929
Roque River	3	2018-10-05	Δ	Eukiefferiella devonica group	ī	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	92 2132
Roque River	3	2018-10-05	Δ	Orthocladius	1	insect		Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	207 /797
Roque River	3	2018-10-05	Δ	Synorthocladius	1	insect		Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	184 4264
Roque River	3	2018-10-05	Δ	Thienemanniella	1	insect		Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	23 0533
Roque River	3	2018-10-05	Δ	Atractides	й.	non-insect		Arachnida: Acari	v v	v	mites	46 1066
Roque River	3	2018-10-05	Δ	Lebertia	ü	non-insect		Arachnida: Acari	× ×	× ×	mites	253 5863
Rogue River	3	2010-10-05	^	Protzia	ii ii	non insoct	Aquatic	Arachnida: Acari	*	~	mitos	230.5005
Rogue River	2	2010-10-03	A	FIUZIA Sporobon		non-insect	Aquatio	Arachinida: Acari	x	X	mites	23.0333
Rogue River	2	2010-10-03	A	Sperchononsia		non-insect	Aquatio	Arachinida: Acan	x	X	mites	22 0522
Rogue River	2	2010-10-03	A	Terrenticele		non-insect	Aquatio	Arachinida: Acari	x	X	mites	23.0333
Rogue River	2	2010-10-03	A	Prostomo		non-insect	Aquatio	Anacimua. Acam	X minantananun nan inanat	X Totrostommotidoo	nines	40.1000
	2	2010-10-03	A	Ontingentus	•	incont	Aquatic	Annenda, Nenenea		Flucidae		23.0553
Rogue River	3	2018-10-05	A	Optioservus	A	insect	Aquatic	Anthropoda: Insecta	Coleoptera	Elmidae	riffe beetles	130.3190
Rogue River	3	2018-10-05	A	Ontineer us	L .	insect	Aquatic	Arthropoda: Insecta	Coleoptera	Elmidae	riffe beetles	1.343
Rogue River	3	2018-10-05	A		L .	insect	Aquatic	Anthropoda: Insecta	Coleoptera	Elmidae	riffe beetles	11/5./103
Rogue River	3	2018-10-05	A	Zaltzevia	L.	Insect	Aquatic	Arthropoda: Insecta	Coleoptera	Elmidae	rime beeties	345.7995
Rogue River	3	2018-10-05	A	Nemata Ostrososila	0	non-insect	Aquatic		miscellaneous non-insect	X	round worms	101.3731
Rogue River	3	2018-10-05	A	Ostracoda	0	non-insect	Aquatic	Crustacea: Ostracoda	X	X	seed snrimp	46.1066
Rogue River	3	2018-10-05	A	Oligochaeta	0	non-insect	Aquatic	Annelida: Oligochaeta	miscellaneous non-insect	X	segmented worms	2005.6371
Rogue River	3	2018-10-05	A	Physella	0	non-insect	Aquatic	Mollusca: Gastropoda	x	Physidae	snalls	161.3731
Rogue River	3	2018-10-05	A	Juga	0	non-insect	Aquatic	Arthursed as Incosts	X Dia constana	Chlananarlidae	snans	401.000
Rogue River	3	2018-10-05	A	Swellsa	L .	insect	Aquatic	Anthropoda: Insecta	Plecoplera	Chioropenidae	stonemes	23.0533
Rogue River	3	2018-10-05	A	Claassenia sabulosa	L	Insect	Aquatic	Arthropoda: Insecta	Plecoptera	Perildae	stonetiles	23.0533
Rogue River	3	2018-10-05	A	Isoperia	L	Insect	Aquatic	Arthropoda: Insecta	Plecoptera	Periodidae	stonetiles	23.0533
Rogue River	3	2018-10-05	A	Skwala	L	Insect	Aquatic	Arthropoda: Insecta	Plecoptera	Periodidae	stonetiles	1.345
Rogue River	5	2018-10-05	A	Pieronarcys camornica	L .	insect	Aquatic	Arthropoda: Insecta	Piecopiera		stonemes	1.345
Rogue River	5	2018-10-05	A	Simulium	L .	Insect	Aquatic	Arthropoda: Insecta	Diptera	Simulidae	DIACK TILES	121.05
Rogue River	5	2018-10-05	A	Brachycentrus occidentalis	L	insect	Aquatic	Arthropoda: Insecta	Irichoptera	Brachycentridae	caddisflies	80.7
Rogue River	5	2018-10-05	A		L.	Insect	Aquatic	Arthropoda: Insecta	Iricnoptera	Giossosomatidae	caddistiles	40.35
Rogue River	5	2018-10-05	A	I repaxonemata	0	non-insect	Aquatic		miscellaneous non-insect	X Destides	tiat worms	1694.7
Rogue River	5	2018-10-05	A	Baetis tricaudatus complex	L .	Insect	Aquatic	Arthropoda: Insecta	Epnemeroptera	Baetidae	mayriles	121.05
Rogue River	5	2018-10-05	A	Epnemerella excrucians group	L	Insect	Aquatic	Arthropoda: Insecta	Epnemeroptera	Epnemereilidae	mayriles	40.35
Rogue River	5	2018-10-05	A	Chironomidae	P	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae	midges	161.4
Rogue River	5	2018-10-05	A	Phaenopsectra	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Chironominae	midges	40.35
Rogue River	5	2018-10-05	A	Polypedilum	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Chironominae	midges	484.2
Rogue River	5	2018-10-05	A	Cricotopus	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	40.35
Rogue River	5	2018-10-05	A	Cricotopus trifascia group	L .	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	685.95
Rogue River	5	2018-10-05	A	Eukiefferiella brehmi group	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	80.7
Rogue River	5	2018-10-05	A	Eukiefferiella claripennis group	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	161.4
Rogue River	5	2018-10-05	A	Eukietteriella devonica group	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	282.45
Rogue River	5	2018-10-05	A	Ornocladius	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	322.8
Rogue River	5	∠018-10-05	A	Synorthocladius	L	insect	Aquatic	Artnropoda: Insecta	Diptera	Unironomidae: Urthocladiinae	midges	121.05
Rogue River	5	2018-10-05	A	Oribatida	U	non-insect	Aquatic	Arachnida: Acari	x	х	mites	322.8
Rogue River	5	2018-10-05	A	Sperchon	U	non-insect	Aquatic	Arachnida: Acari	x	x	mites	40.35
Rogue River	5	2018-10-05	A	Sperchonopsis	U	non-insect	Aquatic	Arachnida: Acari	x	x	mites	40.35
Rogue River	5	2018-10-05	A	lestudacarus	U	non-insect	Aquatic	Arachnida: Acari	x	X	mites	40.35

Waterbody	Station	Date	Replicate	Taxon	Stage	Insect	Origin	Higher.classification	Order	Family	Common.name	Abundance
Rogue River	5	2018-10-05	A	Psychoda	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Psychodidae	moth flies	40.35
Roque River	5	2018-10-05	А	Sphaeriidae	U	non-insect	Aquatic	Mollusca: Bivalvia	x	Sphaeriidae	pea clams	40.35
Roque River	5	2018-10-05	А	Optioservus	А	insect	Aquatic	Arthropoda: Insecta	Coleoptera	Elmidae	riffle beetles	40.35
Roque River	5	2018-10-05	А	Optioservus	L	insect	Aquatic	Arthropoda: Insecta	Coleoptera	Elmidae	riffle beetles	242.1
Roque River	5	2018-10-05	A	Nemata	Ū	non-insect	Aquatic	Nemata	miscellaneous non-insect	x	round worms	40.35
Roque River	5	2018-10-05	Δ	Crangonyx	ŭ	non-insect	Aquatic	Crustacea: Amphipoda	Y	Crangonyctidae	scuds	1170 15
Roque River	5	2018-10-05	Δ	Ostracoda	ŭ	non-insect		Crustacea: Ostracoda	× ×	v	seed shrimp	80.7
Rogue River	5	2018 10 05	^	Oligochaeta		non insect	Aquatic	Annelida: Oligochaeta	niscollangous non insact	~	sector simility	6577.05
Rogue River	5	2010-10-05	~	Eluminicala	ii ii	non insect	Aquatio	Melluese: Cestrepede		A Hudrohiidaa	segmented worms	2702.0
	5	2016-10-05	A	Fiuminicola		non-insect	Aquatic	Mollusca. Gastropoua	x		Sildiis	3792.9
Rogue River	5	2018-10-05	A	Lanx	0	non-insect	Aquatic	Mollusca: Gastropoda	x	Lymnaeidae	snalls	1.345
Rogue River	5	2018-10-05	A	Physella	U	non-insect	Aquatic	Mollusca: Gastropoda	x	Physidae	snalls	1170.15
Rogue River	5	2018-10-05	A	Helisoma	U	non-insect	Aquatic	Mollusca: Gastropoda	х	Planorbidae	snails	1.345
Rogue River	5	2018-10-05	A	Menetus	U	non-insect	Aquatic	Mollusca: Gastropoda	x	Planorbidae	snails	40.35
Rogue River	5	2018-10-05	A	Pteronarcys californica	L	insect	Aquatic	Arthropoda: Insecta	Plecoptera	Pteronarcyidae	stoneflies	1.345
Rogue River	7	2018-10-05	А	Simulium	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Simuliidae	black flies	221.925
Rogue River	7	2018-10-05	А	Brachycentrus occidentalis	L	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Brachycentridae	caddisflies	20.175
Roque River	7	2018-10-05	А	Glossosoma	L	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Glossosomatidae	caddisflies	80.7
Roque River	7	2018-10-05	А	Hvdropsvche	L	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Hvdropsvchidae	caddisflies	685.95
Roque River	7	2018-10-05	А	Lepidostoma (Neodinarthrum)	1	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Lepidostomatidae	caddisflies	100 875
Roque River	7	2018-10-05	Δ	Ceraclea	-	insect		Arthropoda: Insecta	Trichoptera	Leptoceridae	caddisflies	1 3/15
Rogue River	7	2018 10 05	^	Homorodromia	1	insect	Aquatic	Arthropoda: Insocta	Diptora	Empididae	dance flies	40.35
Rogue River	7	2010-10-05	~	Tranavanamata		non incost	Aquatio	Turbellerie	mineral manual nen insert		flat worma	007 975
Rogue River	7	2018-10-05	A	Trepaxonemata		non-insect	Aquatic		miscellaneous non-insect	X De stide s	nat worms	907.875
Rogue River	-	2018-10-05	A	Acentrella Insignificans	L .	insect	Aquatic	Arthropoda: Insecta	Epnemeroptera	Baetidae	mayfiles	20.175
Rogue River	1	2018-10-05	A	Baetis tricaudatus complex	L	insect	Aquatic	Arthropoda: Insecta	Ephemeroptera	Baetidae	mayflies	3268.35
Rogue River	7	2018-10-05	A	Drunella grandis	L	insect	Aquatic	Arthropoda: Insecta	Ephemeroptera	Ephemerellidae	mayflies	20.175
Rogue River	7	2018-10-05	A	Ephemerella excrucians group	L	insect	Aquatic	Arthropoda: Insecta	Ephemeroptera	Ephemerellidae	mayflies	262.275
Rogue River	7	2018-10-05	A	Leptophlebiidae	L	insect	Aquatic	Arthropoda: Insecta	Ephemeroptera	Leptophlebiidae	mayflies	20.175
Rogue River	7	2018-10-05	A	Chironomidae	Р	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae	midges	201.75
Rogue River	7	2018-10-05	А	Microtendipes pedellus group	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Chironominae	midges	100.875
Rogue River	7	2018-10-05	А	Paratendipes	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Chironominae	midges	20.175
Roque River	7	2018-10-05	А	Polypedilum	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Chironominae	midges	262,275
Roque River	7	2018-10-05	A	Micropsectra	- I	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Chironominae: Tanvtarsini	midges	60.525
Roque River	7	2018-10-05	Δ	Cardiocladius	1	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midaes	121.05
Roque River	7	2018-10-05	Δ	Cricotopus	1	insect		Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	2/2 1
Rogue River	7	2010-10-05	^	Criestopus hisipatus group		inacot	Aquatio	Arthropoda: Insecta	Diptera	Chironomidae: Orthooladiinae	midges	242.1
Rogue River	7	2018-10-05	A	Cricolopus bicinclus group	L .	insect	Aquatic	Anthropoda: Insecta	Diptera	Chironomidae: Onnociadimae	midges	20.175
Rogue River	-	2018-10-05	A	Cricotopus trifascia group	L .	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	miages	141.225
Rogue River	7	2018-10-05	A	Eukietteriella claripennis group	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	282.45
Rogue River	7	2018-10-05	A	Eukiefferiella devonica group	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	40.35
Rogue River	7	2018-10-05	A	Orthocladius	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	181.575
Rogue River	7	2018-10-05	A	Synorthocladius	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	141.225
Rogue River	7	2018-10-05	A	Thienemanniella	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	20.175
Rogue River	7	2018-10-05	A	Tvetenia vitracies group	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	100.875
Rogue River	7	2018-10-05	A	Lebertia	U	non-insect	Aquatic	Arachnida: Acari	х	х	mites	20.175
Rogue River	7	2018-10-05	А	Sperchon	U	non-insect	Aquatic	Arachnida: Acari	х	х	mites	121.05
Roque River	7	2018-10-05	А	Prostoma	U	non-insect	Aquatic	Annelida: Nemertea	miscellaneous non-insect	Tetrastemmatidae	nemerteans	60.525
Roque River	7	2018-10-05	А	Optioservus	А	insect	Aquatic	Arthropoda: Insecta	Coleoptera	Elmidae	riffle beetles	20.175
Roque River	7	2018-10-05	А	Optioservus	L	insect	Aquatic	Arthropoda: Insecta	Coleoptera	Elmidae	riffle beetles	746.475
Roque River	7	2018-10-05	A	Zaitzevia	- I	insect	Aquatic	Arthropoda: Insecta	Coleoptera	Elmidae	riffle beetles	20 175
Roque River	7	2018-10-05	Δ	Nemata	ū	non-insect	Aquatic	Nemata	miscellaneous non-insect	Y	round worms	121.05
Poque River	7	2018 10 05	^	Crangonyx	ü	non insect	Aquatic	Crustacea: Amphipoda		Crangenyetidae	soude	20 175
Rogue River	7	2018 10 05	^	Ostracoda		non insect	Aquatic	Crustacea: Ampripoda	*	v	soud shrimp	40.35
Rogue River	7	2010-10-05	~	Oligophosto	ii ii	non insect	Aquatio	Appolido: Oligophoeto	A miacollonoouo non incost	× .	seeu siininp	1755 005
	7	2018-10-05	A	Cligochaeta		non-insect	Aquatic	Malluage: Castronada	miscellaneous non-insect	X Lludrobiidee	segmented worms	1755.225
Rogue River	7	2018-10-05	A	Fiuminicola		non-insect	Aquatic	Mollusca: Gastropoda	X	Hydrobiidae	snalls	1.345
Rogue River	1	2018-10-05	A	Lanx	U	non-insect	Aquatic	Mollusca: Gastropoda	x	Lymnaeidae	snalls	1.345
Rogue River	7	2018-10-05	A	Physella	U	non-insect	Aquatic	Mollusca: Gastropoda	x	Physidae	snails	161.4
Rogue River	7	2018-10-05	A	Juga	U	non-insect	Aquatic	Mollusca: Gastropoda	х	Pleuroceridae	snails	1.345
Rogue River	7	2018-10-05	A	Calineuria californica	L	insect	Aquatic	Arthropoda: Insecta	Plecoptera	Perlidae	stoneflies	20.175
Rogue River	7	2018-10-05	A	Claassenia sabulosa	L	insect	Aquatic	Arthropoda: Insecta	Plecoptera	Perlidae	stoneflies	20.175
Rogue River	7	2018-10-05	A	Pteronarcys californica	L	insect	Aquatic	Arthropoda: Insecta	Plecoptera	Pteronarcyidae	stoneflies	20.175
Rogue River	2	2018-10-03	В	Petrophila	L	insect	Aquatic	Arthropoda: Insecta	Lepidoptera	Pyralidae	aquatic moths	564.9
Roque River	2	2018-10-03	В	Simulium	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Simuliidae	black flies	80.7
Roque River	2	2018-10-03	в	Amiocentrus aspilus	L	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Brachvcentridae	caddisflies	80.7
Roque River	2	2018-10-03	в	Brachycentrus occidentalis	Ĺ	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Brachycentridae	caddisflies	2178 9
Roque River	2	2018-10-03	B	Glossosoma	ī	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Glossosomatidae	caddisflies	80.7
Roque River	2	2018-10-03	B	Glossosoma	P	insect		Arthropoda: Insecto	Trichontera	Glossosomatidae	caddieflies	80.7
Roque Divor	2	2018-10-03	B	Cheumatonsyche	i	insect	Aquatic	Arthropoda: Insecta	Trichontera	Hydronsychidae	caddisflies	161 4
Rogue River	2	2010-10-03	5	Hydropsycho	с 1	insoct	Aquatic	Arthropoda: Insecta	Trichoptora	Hydropsychidae	caudioflico	101.4
Rogue River	∠ 2	2010-10-03	D	Hydroptile	-	insect	Aquatic	Arthropodo: Insecta	Trichoptera	Hydroptilidae	caudioflic -	2021.5
Rogue River	∠	2010-10-03	D	пушорша	L	insect	Aqualic	Annopoda: insecta	menoptera	пушориниае	caudisilles	322.8

Waterbody	Station	Date	Replicate	Taxon	Stage	Insect	Origin	Higher.classification	Order	Family	Common.name	Abundance
Rogue River	2	2018-10-03	В	Lepidostoma (Neodinarthrum)	L	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Lepidostomatidae	caddisflies	322.8
Rogue River	2	2018-10-03	В	Ceraclea	L	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Leptoceridae	caddisflies	1.345
Rogue River	2	2018-10-03	В	Rhyacophila arnaudi	L	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Rhyacophilidae	caddisflies	1.345
Rogue River	2	2018-10-03	В	Rhyacophila brunnea/vemna group	L	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Rhyacophilidae	caddisflies	1.345
Roque River	2	2018-10-03	В	Rhyacophila malkini	Р	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Rhyacophilidae	caddisflies	161.4
Roque River	2	2018-10-03	В	Pacifastacus	U	non-insect	Aquatic	Crustacea: Decapoda	x	Astacidae	crayfish	1.345
Roque River	2	2018-10-03	В	Hemerodromia	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Empididae	dance flies	322.8
Roque River	2	2018-10-03	В	Trepaxonemata	U	non-insect	Aquatic	Turbellaria	miscellaneous non-insect	x	flat worms	403.5
Roque River	2	2018-10-03	В	Acentrella insignificans	Ĺ	insect	Aquatic	Arthropoda: Insecta	Ephemeroptera	Baetidae	mavflies	80.7
Roque River	2	2018-10-03	в	Baetis flavistriga complex	L	insect	Aquatic	Arthropoda: Insecta	Ephemeroptera	Baetidae	mavflies	80.7
Roque River	2	2018-10-03	B	Baetis tricaudatus complex	ī	insect	Aquatic	Arthropoda: Insecta	Ephemeroptera	Baetidae	mayflies	403.5
Roque River	2	2018-10-03	B	Drunella grandis	ī	insect	Aquatic	Arthropoda: Insecta	Ephemeroptera	Ephemerellidae	mayflies	80.7
Roque River	2	2018-10-03	B	Ephemerella excrucians group	- I	insect	Aquatic	Arthropoda: Insecta	Ephemeroptera	Ephemerellidae	mayflies	3631.5
Roque River	2	2018-10-03	B	Ephemerella tibialis	- I	insect	Aquatic	Arthropoda: Insecta	Ephemeroptera	Ephemerellidae	mayflies	1 345
Roque River	2	2018-10-03	B	Cinvama	-	insect	Aquatic	Arthropoda: Insecta	Enhemeroptera	Hentageniidae	mayflies	161.4
Roque River	2	2018-10-03	B	Hentagenia	ī	insect	Aquatic	Arthropoda: Insecta	Ephemeroptera	Hentageniidae	mayflies	80.7
Roque River	2	2018-10-03	B	Rhithrogena	1	insect		Arthropoda: Insecta	Ephemeroptera	Hentageniidae	mayflies	1 3/15
Roque River	2	2018-10-03	B	Lentophlehiidae	ī	insect	Aquatic	Arthropoda: Insecta	Ephemeroptera	Leptophlehiidae	mayflies	80.7
Roque River	2	2018-10-03	B	Chironomidae	P	insect		Arthropoda: Insecta	Dintera	Chironomidae	midaes	1120.8
Rogue River	2	2010-10-03	B	Bolypodilum	÷	insoct	Aquatic	Arthropoda: Insecta	Diptora	Chironomidae: Chironominae	midges	80.7
Rogue River	2	2018 10 03	B	Micropsoctra	1	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Chironominae: Tanutarsini	midges	242.1
Rogue River	2	2018 10 03	B	Paratapytarsus	1	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Chironominae: Tanytarsini	midges	242.1
Rogue River	2	2010-10-03	D	Phoetopytorous	L 1	insect	Aquatio	Arthropoda: Insecta	Diptera	Chironomidae: Chironominae: Tanytarsini	midges	80.7
Rogue River	2	2010-10-03	D	Rifeolariylarsus	L 1	insect	Aquatio	Arthropoda: Insecta	Diptera	Chironomidae: Chironominae: Tamytarsim	midges	80.7
	2	2010-10-03	D		L .	insect	Aquatic	Arthropoua. Insecta	Diptera	Chironomidae. Diamesinae	muyes	00.7
Rogue River	2	2018-10-03	В		L	Insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	645.6
Rogue River	2	2018-10-03	В	Cricotopus (Nostocociadius)	L	Insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	//4/.2
Rogue River	2	2018-10-03	в	Cricotopus trifascia group	L .	Insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	miages	484.2
Rogue River	2	2018-10-03	в	Eukiefferiella brehmi group	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	645.6
Rogue River	2	2018-10-03	в	Eukiemeriella claripennis group	L	Insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	miages	1210.5
Rogue River	2	2018-10-03	В	Eukiefferiella devonica group	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	1452.6
Rogue River	2	2018-10-03	В	Orthocladius	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	2017.5
Rogue River	2	2018-10-03	В	I hienemanniella	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	80.7
Rogue River	2	2018-10-03	В	I vetenia vitracies group	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	80.7
Rogue River	2	2018-10-03	В	Trombidiformes	U	non-insect	Aquatic	Arachnida: Acari	Trombidiformes	х	mites	80.7
Rogue River	2	2018-10-03	В	Lebertia	U	non-insect	Aquatic	Arachnida: Acari	x	х	mites	242.1
Rogue River	2	2018-10-03	В	Sperchon	U	non-insect	Aquatic	Arachnida: Acari	x	х	mites	645.6
Rogue River	2	2018-10-03	В	Sperchonopsis	U	non-insect	Aquatic	Arachnida: Acari	x	х	mites	242.1
Rogue River	2	2018-10-03	В	Prostoma	U	non-insect	Aquatic	Annelida: Nemertea	miscellaneous non-insect	Tetrastemmatidae	nemerteans	80.7
Rogue River	2	2018-10-03	В	Optioservus	A	insect	Aquatic	Arthropoda: Insecta	Coleoptera	Elmidae	riffle beetles	80.7
Rogue River	2	2018-10-03	В	Zaitzevia	A	insect	Aquatic	Arthropoda: Insecta	Coleoptera	Elmidae	riffle beetles	80.7
Rogue River	2	2018-10-03	В	Narpus concolor	L	insect	Aquatic	Arthropoda: Insecta	Coleoptera	Elmidae	riffle beetles	80.7
Rogue River	2	2018-10-03	В	Optioservus	L	insect	Aquatic	Arthropoda: Insecta	Coleoptera	Elmidae	riffle beetles	4438.5
Rogue River	2	2018-10-03	В	Zaitzevia	L	insect	Aquatic	Arthropoda: Insecta	Coleoptera	Elmidae	riffle beetles	1129.8
Rogue River	2	2018-10-03	В	Nemata	U	non-insect	Aquatic	Nemata	miscellaneous non-insect	x	round worms	242.1
Rogue River	2	2018-10-03	В	Crangonyx	U	non-insect	Aquatic	Crustacea: Amphipoda	х	Crangonyctidae	scuds	80.7
Rogue River	2	2018-10-03	В	Oligochaeta	U	non-insect	Aquatic	Annelida: Oligochaeta	miscellaneous non-insect	х	segmented worms	5003.4
Rogue River	2	2018-10-03	В	Lanx	U	non-insect	Aquatic	Mollusca: Gastropoda	х	Lymnaeidae	snails	1.345
Rogue River	2	2018-10-03	В	Juga	U	non-insect	Aquatic	Mollusca: Gastropoda	х	Pleuroceridae	snails	1.345
Rogue River	2	2018-10-03	В	Calineuria californica	L	insect	Aquatic	Arthropoda: Insecta	Plecoptera	Perlidae	stoneflies	1.345
Rogue River	2	2018-10-03	В	Hesperoperla pacifica	L	insect	Aquatic	Arthropoda: Insecta	Plecoptera	Perlidae	stoneflies	1.345
Rogue River	2	2018-10-03	В	Isoperla	L	insect	Aquatic	Arthropoda: Insecta	Plecoptera	Perlodidae	stoneflies	80.7
Rogue River	2	2018-10-03	В	Skwala	L	insect	Aquatic	Arthropoda: Insecta	Plecoptera	Perlodidae	stoneflies	1.345
Rogue River	2	2018-10-03	В	Pteronarcys californica	L	insect	Aquatic	Arthropoda: Insecta	Plecoptera	Pteronarcyidae	stoneflies	1.345
Rogue River	1	2018-10-04	В	Amiocentrus aspilus	L	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Brachycentridae	caddisflies	107.61345
Rogue River	1	2018-10-04	В	Brachycentrus occidentalis	L	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Brachycentridae	caddisflies	896.77875
Roque River	1	2018-10-04	В	Glossosoma	L	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Glossosomatidae	caddisflies	753.29415
Roque River	1	2018-10-04	В	Glossosoma	Р	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Glossosomatidae	caddisflies	35.87115
Roque River	1	2018-10-04	В	Cheumatopsyche	L	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Hydropsychidae	caddisflies	35.87115
Roque River	1	2018-10-04	В	Hydropsyche	L	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Hydropsychidae	caddisflies	3300.1458
Rogue River	1	2018-10-04	В	Lepidostoma (Neodinarthrum)	L	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Lepidostomatidae	caddisflies	573.9384
Rogue River	1	2018-10-04	В	Ceraclea	L	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Leptoceridae	caddisflies	35.87115
Rogue River	1	2018-10-04	В	Trepaxonemata	U	non-insect	Aquatic	Turbellaria	miscellaneous non-insect	x	flat worms	107.61345
Roque River	1	2018-10-04	в	Acentrella insignificans	Ĺ	insect	Aquatic	Arthropoda: Insecta	Ephemeroptera	Baetidae	mavflies	71,7423
Roque River	1	2018-10-04	B	Baetis tricaudatus complex	Ĺ	insect	Aquatic	Arthropoda: Insecta	Ephemeroptera	Baetidae	mavflies	358.7115
Roque River	1	2018-10-04	B	Drunella grandis	Ĺ	insect	Aquatic	Arthropoda: Insecta	Ephemeroptera	Ephemerellidae	mavflies	107 61345
Roque River	1	2018-10-04	B	Ephemerella excrucians group	-	insect	Aquatic	Arthropoda: Insecta	Ephemeroptera	Ephemerellidae	mayflies	2008 7844
Roque River	1	2018-10-04	B	Epeorus	-	insect	Aquatic	Arthropoda: Insecta	Ephemeroptera	Heptageniidae	mavflies	179 35575
Roque River	1	2018-10-04	B	Rhithrogena	-	insect	Aquatic	Arthropoda: Insecta	Ephemeroptera	Heptageniidae	mavflies	358 7115
	•	2010 10 04	-		-			,	-p.io.noroptoru			000.7110

Waterbody	Station	Date	Replicate	Taxon	Stage	Insect	Origin	Higher.classification	Order	Family	Common.name	Abundance
Rogue River	1	2018-10-04	В	Chironomidae	Р	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae	midges	466.32495
Rogue River	1	2018-10-04	В	Polypedilum	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Chironominae	midges	394.58265
Rogue River	1	2018-10-04	В	Micropsectra	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Chironominae: Tanytarsini	midges	1004.3922
Rogue River	1	2018-10-04	В	Diamesa	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Diamesinae	midges	35.87115
Roque River	1	2018-10-04	В	Potthastia gaedii group	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Diamesinae	midges	35.87115
Roque River	1	2018-10-04	В	Cricotopus	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	394.58265
Roque River	1	2018-10-04	В	Cricotopus (Nostococladius)	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	358.7115
Roque River	1	2018-10-04	В	Eukiefferiella brehmi group	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midaes	107.61345
Roque River	1	2018-10-04	В	Eukiefferiella claripennis group	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midaes	932,6499
Roque River	1	2018-10-04	в	Eukiefferiella devonica group	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midaes	215,2269
Roque River	1	2018-10-04	В	Orthocladius	Ē	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	322.84035
Roque River	1	2018-10-04	B	Synorthocladius	1	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	35 87115
Roque River	1	2018-10-04	В	Tvetenia bavarica group	Ē	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	35.87115
Roque River	1	2018-10-04	B	Lebertia	Ū	non-insect	Aquatic	Arachnida: Acari	x	x	mites	179 35575
Roque River	1	2018-10-04	B	Sperchon	ŭ	non-insect	Aquatic	Arachnida: Acari	x	Y	mites	753 29415
Roque River	1	2018-10-04	B	Ontioservus	Ă	insect	Aquatic	Arthropoda: Insecta	Coleoptera	Elmidae	riffle beetles	322 84035
Roque River	1	2018-10-04	B	Narnus concolor	î	insect	Aquatic	Arthropoda: Insecta	Coleoptera	Elmidae	riffle beetles	71 7423
Roque River	1	2018-10-04	B	Ontioservus	ī	insect	Aquatic	Arthropoda: Insecta	Coleoptera	Elmidae	riffle beetles	1937 0421
Roque River	1	2018-10-04	B	Zaitzevia	ī	insect	Aquatic	Arthropoda: Insecta	Coleoptera	Elmidae	riffle beetles	502 1961
Roque River	1	2018-10-04	B	Nemata	Ξ.	non-insect		Nemata	miscellaneous non-insect	v	round worms	358 7115
Roque River	1	2018-10-04	B	Oligochaeta	ii ii	non-insect		Annelida: Oligochaeta	miscellaneous non-insect	*	segmented worms	1721 8152
Roque River	1	2018-10-04	B	luga	ii ii	non-insect		Mollusca: Gastropoda	v	Pleuroceridae	enaile	71 7/23
Rogue River	1	2018 10 04	B	Coppiidoo	i	incoct	Aquatic	Arthropoda: Insocta	A Placantara	Cappiidae	stanoflios	71.7423
Rogue River	1	2018 10 04	B	Sweltsa	1	insect	Aquatic	Arthropoda: Insecta	Plecoptera	Chloroporlidao	stoneflies	359 7115
Rogue River	1	2010-10-04	B		1	insect	Aquatio	Arthropoda: Insecta	Plecoptera	Derlidee	stoneflice	206.0602
Rogue River	1	2010-10-04	D		1	insect	Aquatic	Arthropoda: Insecta	Plecoptera	Perildae	stoneflies	200.9092
Rogue River	1	2010-10-04	D		1	insect	Aquatic	Arthropoda: Insecta	Plecoptera	Periodae	stoneflies	33.07113
Rogue River	1	2010-10-04	D	Borlodidoo	1	insect	Aquatic	Arthropoda: Insecta	Plecoptera	Periodidae	stoneflies	215.2209
	4	2010-10-04	D	Shuala	L .	insect	Aquatic	Arthropoua. Insecta	Plecoptera	Periodidae	stoneflies	213.2209
Rogue River	1	2018-10-04	В	Skwala	L .	insect	Aquatic	Anthropoda: Insecta	Plecoplera	Periodidae	stonemes	35.67115
Rogue River	1	2018-10-04	в	Pteronarcys californica	L .	Insect	Aquatic	Arthropoda: Insecta	Piecoptera	Pteronarcyldae	stonefiles	35.87115
Rogue River	4	2018-10-04	в	Simulium	L	Insect	Aquatic	Arthropoda: Insecta	Diptera	Simulidae	DIACK TILES	72.91245
Rogue River	4	2018-10-04	в	Giossosoma	P	Insect	Aquatic	Arthropoda: Insecta	Trichoptera	Glossosomatidae	caddistiles	24.30415
Rogue River	4	2018-10-04	в	Hydropsycne	L .	Insect	Aquatic	Arthropoda: Insecta	Trichoptera	Hydropsychidae	caddistiles	170.12905
Rogue River	4	2018-10-04	в	Lepidostoma (Neodinarthrum)	L .	Insect	Aquatic	Arthropoda: Insecta	Trichoptera	Lepidostomatidae	caddistiles	729.1245
Rogue River	4	2018-10-04	в	Lepidostoma unicolor group	L	insect	Aquatic	Arthropoda: Insecta	Irichoptera	Lepidostomatidae	caddisflies	24.30415
Rogue River	4	2018-10-04	в	Ceraclea	L	insect	Aquatic	Arthropoda: Insecta	Irichoptera	Leptoceridae	caddisflies	874.9494
Rogue River	4	2018-10-04	в	Hemerodromia	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Empididae	dance flies	72.91245
Rogue River	4	2018-10-04	в	Irepaxonemata	0	non-insect	Aquatic	lurbellaria	miscellaneous non-insect	x	flat worms	534.6913
Rogue River	4	2018-10-04	в	Acentrella insignificans	L	insect	Aquatic	Arthropoda: Insecta	Ephemeroptera	Baetidae	mayflies	218.73735
Rogue River	4	2018-10-04	в	Baetis tricaudatus complex	L	insect	Aquatic	Arthropoda: Insecta	Ephemeroptera	Baetidae	mayflies	194.4332
Rogue River	4	2018-10-04	в	Drunella grandis	L	insect	Aquatic	Arthropoda: Insecta	Ephemeroptera	Ephemerellidae	mayflies	24.30415
Rogue River	4	2018-10-04	В	Ephemerella excrucians group	L	insect	Aquatic	Arthropoda: Insecta	Ephemeroptera	Ephemerellidae	mayflies	1288.11995
Rogue River	4	2018-10-04	В	Chironomidae	Р	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae	midges	874.9494
Rogue River	4	2018-10-04	в	Polypedilum	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Chironominae	midges	291.6498
Rogue River	4	2018-10-04	В	Micropsectra	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Chironominae: Tanytarsini	midges	121.52075
Rogue River	4	2018-10-04	В	Potthastia gaedii group	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Diamesinae	midges	267.34565
Rogue River	4	2018-10-04	В	Potthastia longimana group	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Diamesinae	midges	24.30415
Rogue River	4	2018-10-04	В	Cardiocladius	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	24.30415
Rogue River	4	2018-10-04	в	Cricotopus	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	510.38715
Rogue River	4	2018-10-04	В	Cricotopus (Nostococladius)	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	24.30415
Rogue River	4	2018-10-04	В	Cricotopus trifascia group	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	364.56225
Rogue River	4	2018-10-04	В	Eukiefferiella claripennis group	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	72.91245
Rogue River	4	2018-10-04	В	Eukiefferiella devonica group	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	24.30415
Rogue River	4	2018-10-04	В	Nanocladius	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	48.6083
Rogue River	4	2018-10-04	В	Orthocladius	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	2551.93575
Rogue River	4	2018-10-04	В	Rheocricotopus	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	48.6083
Rogue River	4	2018-10-04	В	Synorthocladius	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	97.2166
Rogue River	4	2018-10-04	В	Tvetenia vitracies group	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	24.30415
Rogue River	4	2018-10-04	В	Thienemannimyia complex	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Tanypodinae	midges	24.30415
Rogue River	4	2018-10-04	В	Lebertia	U	non-insect	Aquatic	Arachnida: Acari	х	x	mites	24.30415
Rogue River	4	2018-10-04	В	Sperchon	U	non-insect	Aquatic	Arachnida: Acari	x	x	mites	194.4332
Rogue River	4	2018-10-04	В	Sperchonopsis	U	non-insect	Aquatic	Arachnida: Acari	x	x	mites	24.30415
Rogue River	4	2018-10-04	В	Torrenticola	U	non-insect	Aquatic	Arachnida: Acari	х	х	mites	24.30415
Rogue River	4	2018-10-04	В	Prostoma	U	non-insect	Aquatic	Annelida: Nemertea	miscellaneous non-insect	Tetrastemmatidae	nemerteans	24.30415
Rogue River	4	2018-10-04	В	Sphaeriidae	U	non-insect	Aquatic	Mollusca: Bivalvia	x	Sphaeriidae	pea clams	48.6083
Rogue River	4	2018-10-04	В	Optioservus	А	insect	Aquatic	Arthropoda: Insecta	Coleoptera	Elmidae	riffle beetles	24.30415
Rogue River	4	2018-10-04	В	Narpus concolor	L	insect	Aquatic	Arthropoda: Insecta	Coleoptera	Elmidae	riffle beetles	24.30415
Rogue River	4	2018-10-04	В	Optioservus	L	insect	Aquatic	Arthropoda: Insecta	Coleoptera	Elmidae	riffle beetles	923.5577

Waterbody	Station	Date	Replicate	Taxon	Stage	Insect	Origin	Higher.classification	Order	Family	Common.name	Abundance
Rogue River	4	2018-10-04	В	Zaitzevia	L	insect	Aquatic	Arthropoda: Insecta	Coleoptera	Elmidae	riffle beetles	97.2166
Roque River	4	2018-10-04	В	Nemata	U	non-insect	Aquatic	Nemata	miscellaneous non-insect	x	round worms	194.4332
Roque River	4	2018-10-04	В	Ostracoda	U	non-insect	Aquatic	Crustacea: Ostracoda	х	x	seed shrimp	267.34565
Roque River	4	2018-10-04	В	Oligochaeta	U	non-insect	Aquatic	Annelida: Oligochaeta	miscellaneous non-insect	x	seamented worms	1020.7743
Roque River	4	2018-10-04	в	Fluminicola	Ŭ	non-insect	Aquatic	Mollusca: Gastropoda	x	Hvdrobiidae	snails	48,6083
Roque River	4	2018-10-04	В	Juga	Ũ	non-insect	Aquatic	Mollusca: Gastropoda	x	Pleuroceridae	snails	267.34565
Roque River	4	2018-10-04	B	Chloroperlidae	Ĩ	insect	Aquatic	Arthropoda: Insecta	Plecontera	Chloroperlidae	stoneflies	1 345
Roque River	4	2018-10-04	B	Claassenia sabulosa	1	insect	Aquatic	Arthropoda: Insecta	Plecontera	Perlidae	stoneflies	24 30415
Roque River	1	2018-10-04	B	Hesperoperla pacifica	1	insect		Arthropoda: Insecta	Plecontera	Perlidae	stoneflies	1 3/15
Rogue River	4	2010-10-04	D	Resperopena pacifica		inacot	Aquatio	Arthropoda: Insecta	Discontora	Dtereperovideo	atonoflica	1.040
	4	2010-10-04	D		L .	insect	Aquatic	Arthropoda, Insecta	Distant	Simulidee	stonenies	1.343
Rogue River	0	2018-10-04	Б		L .	insect	Aquatic	Anthropoda: Insecta	Diplera	Simulidae	DIACK IIIES	23.0533
Rogue River	6	2018-10-04	в	Amiocentrus aspilus	L .	insect	Aquatic	Arthropoda: Insecta	Tricnoptera	Brachycentridae	caddistiles	46.1066
Rogue River	6	2018-10-04	в	Brachycentrus occidentalis	L	insect	Aquatic	Arthropoda: Insecta	Irichoptera	Brachycentridae	caddisflies	69.1599
Rogue River	6	2018-10-04	в	Protoptila	L	insect	Aquatic	Arthropoda: Insecta	Irichoptera	Glossosomatidae	caddisflies	23.0533
Rogue River	6	2018-10-04	В	Hydropsyche	L	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Hydropsychidae	caddisflies	184.4264
Rogue River	6	2018-10-04	В	Hydroptila	L	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Hydroptilidae	caddisflies	23.0533
Rogue River	6	2018-10-04	В	Lepidostoma (Neodinarthrum)	L	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Lepidostomatidae	caddisflies	691.599
Rogue River	6	2018-10-04	В	Lepidostoma unicolor group	L	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Lepidostomatidae	caddisflies	23.0533
Rogue River	6	2018-10-04	В	Ceraclea	L	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Leptoceridae	caddisflies	161.3731
Rogue River	6	2018-10-04	В	Hemerodromia	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Empididae	dance flies	46.1066
Rogue River	6	2018-10-04	В	Trepaxonemata	U	non-insect	Aquatic	Turbellaria	miscellaneous non-insect	x	flat worms	668.5457
Roque River	6	2018-10-04	В	Acentrella insignificans	L	insect	Aquatic	Arthropoda: Insecta	Ephemeroptera	Baetidae	mayflies	23.0533
Roque River	6	2018-10-04	В	Baetis tricaudatus complex	L	insect	Aquatic	Arthropoda: Insecta	Ephemeroptera	Baetidae	mayflies	115.2665
Roque River	6	2018-10-04	в	Ephemerella excrucians group	L	insect	Aquatic	Arthropoda: Insecta	Ephemeroptera	Ephemerellidae	mavflies	299,6929
Roque River	6	2018-10-04	в	Chironomidae	Р	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae	middes	207 4797
Roque River	6	2018-10-04	B	Cryptochironomus	i	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Chironominae	midges	23 0533
Roque River	6	2018-10-04	B	Polypedilum	ī	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Chironominae	midges	23 0533
Roque River	6	2018-10-04	B	Micropsectra	1	insect		Arthropoda: Insecta	Diptera	Chironomidae: Chironominae: Tanytarsini	midges	23.0533
Rogue River	6	2018 10 04	B	Phoetanytarsus	1	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Chironominae: Tanytarsini	midges	23.0533
Rogue River	0	2010-10-04	D	Criestenus		insect	Aquatic	Arthrepoda, Insecta	Diptera	Chironomidae. Chironominae. Tanytaisini	midges	20.0000
Rogue River	0	2018-10-04	Б	Cricolopus	L .	insect	Aquatic	Anthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	mages	299.0929
Rogue River	6	2018-10-04	в	Cricotopus trifascia group	L .	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthociadiinae	miages	1014.3452
Rogue River	6	2018-10-04	в	Eukiefferiella claripennis group	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	253.5863
Rogue River	6	2018-10-04	В	Eukiefferiella devonica group	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	92.2132
Rogue River	6	2018-10-04	В	Nanocladius	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	23.0533
Rogue River	6	2018-10-04	В	Orthocladius	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	622.4391
Rogue River	6	2018-10-04	В	Synorthocladius	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	161.3731
Rogue River	6	2018-10-04	В	Lebertia	U	non-insect	Aquatic	Arachnida: Acari	х	x	mites	46.1066
Rogue River	6	2018-10-04	В	Protzia	U	non-insect	Aquatic	Arachnida: Acari	х	х	mites	23.0533
Rogue River	6	2018-10-04	В	Sperchon	U	non-insect	Aquatic	Arachnida: Acari	х	х	mites	23.0533
Roque River	6	2018-10-04	В	Sperchonopsis	U	non-insect	Aquatic	Arachnida: Acari	х	х	mites	23.0533
Roque River	6	2018-10-04	В	Torrenticola	U	non-insect	Aquatic	Arachnida: Acari	x	x	mites	115.2665
Roque River	6	2018-10-04	в	Sphaeriidae	Ŭ	non-insect	Aquatic	Mollusca: Bivalvia	x	Sphaerijdae	pea clams	23.0533
Roque River	6	2018-10-04	B	Ontioservus	Ā	insect	Aquatic	Arthropoda: Insecta	Coleoptera	Flmidae	riffle beetles	23 0533
Roque River	6	2018-10-04	B	Narpus concolor	1	insect	Aquatic	Arthropoda: Insecta	Coleoptera	Elmidae	riffle beetles	1 345
Roque River	6	2018-10-04	B	Ontiosenus	1	insect		Arthropoda: Insecta	Coleoptera	Elmidae	riffle beetles	601 500
Rogue River	6	2018 10 04	B	Zaitzovia	1	insect	Aquatic	Arthropoda: Insecta	Coleoptera	Elmidae	riffle beetles	60 1500
Rogue River	6	2010-10-04	D	Nometa		non incost	Aquatio	Nomoto	misselleneous non incest	Liniuae	round wormo	46 1066
	0	2010-10-04	D	Creation	0	non-insect	Aquatic	Crusteses Arenhinede	Inscenarieous non-insect	X Cremensustides		40.1000
	0	2010-10-04	D	Ontropodo	0	non-insect	Aquatic	Crustacea. Ampripoua	x	Grangonyclidae	scuus	001.0010
Rogue River	0	2018-10-04	Б	Ostracoda	0	non-insect	Aquatic	Crustacea: Ostracoda	×	X	seed snnmp	991.2919
Rogue River	6	2018-10-04	в	Oligochaeta	0	non-insect	Aquatic	Annelida: Oligochaeta	miscellaneous non-insect	x	segmented worms	1959.5305
Rogue River	6	2018-10-04	в	Lanx	U	non-insect	Aquatic	Mollusca: Gastropoda	x	Lymnaeidae	snails	1.345
Rogue River	6	2018-10-04	В	Physella	U	non-insect	Aquatic	Mollusca: Gastropoda	х	Physidae	snails	1613.731
Rogue River	6	2018-10-04	В	Juga	U	non-insect	Aquatic	Mollusca: Gastropoda	х	Pleuroceridae	snails	207.4797
Rogue River	3	2018-10-05	В	Petrophila	L	insect	Aquatic	Arthropoda: Insecta	Lepidoptera	Pyralidae	aquatic moths	26.9
Rogue River	3	2018-10-05	В	Amiocentrus aspilus	L	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Brachycentridae	caddisflies	295.9
Rogue River	3	2018-10-05	В	Brachycentrus occidentalis	L	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Brachycentridae	caddisflies	699.4
Rogue River	3	2018-10-05	В	Glossosoma	Р	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Glossosomatidae	caddisflies	26.9
Roque River	3	2018-10-05	В	Hydropsyche	L	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Hydropsychidae	caddisflies	107.6
Roque River	3	2018-10-05	В	Hydroptila	L	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Hydroptilidae	caddisflies	26.9
Rogue River	3	2018-10-05	В	Lepidostoma (Neodinarthrum)	L	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Lepidostomatidae	caddisflies	914.6
Roque River	3	2018-10-05	в	Lepidostoma unicolor group	L	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Lepidostomatidae	caddisflies	26.9
Roque River	3	2018-10-05	в	Ceraclea	Ē	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Leptoceridae	caddisflies	53.8
Roque River	3	2018-10-05	B	Rhyacophila coloradensis group	ī	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Rhyacophilidae	caddisflies	1 345
Roque River	3	2018_10_05	B	Hemerodromia	-	insect		Arthropoda: Insecta	Dintera	Empididae	dance flies	376 6
Roque River	3	2010-10-03	5	Tranavanamata		non incost	Aquatic	Turbollaria	miscollangous pan inacet	v	flat worma	107 0
Rogue River	3	2010-10-00	5	Acontrolla insignificana	i i	incost	Aquatic	Arthropoda: Incosto	Enhomoroptero	A Ractidad	max worms	107.0
Rogue River	3	2010-10-00	B	Accinicate Insignificans	L .	insect	Aquatic	Arthropoda: Insecta	Ephomoroptera	Bactidae	mayilles	20.9
Rogue River	ა ი	2010-10-05	ت م	Enclose a complex	L .	insect	Aquatic	Arthropodo: Insecta		Daciude	mouflies	0U./
Rogue River	3	2010-10-05	D	Epitemerella excrucians group	L	insect	Aquatic	Anniopoda: Insecta	⊏pnemeroptera	Ephemerellidae	maymes	8.008

Waterbody	Station	Date	Replicate	Taxon	Stage	Insect	Origin	Higher.classification	Order	Family	Common.name	Abundance
Rogue River	3	2018-10-05	В	Epeorus	L	insect	Aquatic	Arthropoda: Insecta	Ephemeroptera	Heptageniidae	mayflies	134.5
Rogue River	3	2018-10-05	В	Rhithrogena	L	insect	Aquatic	Arthropoda: Insecta	Ephemeroptera	Heptageniidae	mayflies	26.9
Rogue River	3	2018-10-05	В	Leptophlebiidae	L	insect	Aquatic	Arthropoda: Insecta	Ephemeroptera	Leptophlebiidae	mayflies	26.9
Roque River	3	2018-10-05	В	Chironomidae	Р	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae	midaes	269
Roque River	3	2018-10-05	в	Polypedilum	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Chironominae	midaes	322.8
Roque River	3	2018-10-05	В	Micropsectra	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Chironominae: Tanvtarsini	midges	161.4
Roque River	3	2018-10-05	B	Rheotanytarsus	ī	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Chironominae: Tanytarsini	midges	53.8
Roque River	3	2018-10-05	B	Potthastia gaedii group	ī	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Diamesinae	midaes	26.9
Roque River	3	2018-10-05	B	Corynoneura	1	insect		Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	26.0
Rogue River	3	2018 10 05	B	Cricotopus	1	insect	Aquatic	Arthropoda: Insecta	Diptora	Chironomidae: Orthocladiinae	midges	134.5
Rogue River	3	2018-10-03	D	Cricotopus Cricotopus (Nectopoladius)		insect	Aquatio	Arthropoda: Insecta	Diptera	Chironomidae: Orthooladiinae	midges	154.5
Rogue River	3	2018-10-05	B	Chocolopus (Noslococladius)	L .	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	mages	1007.1
Rogue River	3	2018-10-05	В	Eukielleriella brenmi group	L .	Insect	Aquatic	Anthropoda: Insecta	Diptera	Chironomidae: Onnociadiinae	mages	80.7
Rogue River	3	2018-10-05	в	Eukiemerielia claripennis group	L .	Insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	322.8
Rogue River	3	2018-10-05	в	Orthocladius	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	511.1
Rogue River	3	2018-10-05	В	Synorthocladius	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	134.5
Rogue River	3	2018-10-05	В	Thienemanniella	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	80.7
Rogue River	3	2018-10-05	В	Lebertia	U	non-insect	Aquatic	Arachnida: Acari	x	х	mites	376.6
Rogue River	3	2018-10-05	В	Protzia	U	non-insect	Aquatic	Arachnida: Acari	x	x	mites	134.5
Rogue River	3	2018-10-05	В	Sperchon	U	non-insect	Aquatic	Arachnida: Acari	x	x	mites	376.6
Rogue River	3	2018-10-05	В	Sperchonopsis	U	non-insect	Aquatic	Arachnida: Acari	x	х	mites	80.7
Rogue River	3	2018-10-05	В	Prostoma	U	non-insect	Aquatic	Annelida: Nemertea	miscellaneous non-insect	Tetrastemmatidae	nemerteans	53.8
Rogue River	3	2018-10-05	В	Optioservus	А	insect	Aquatic	Arthropoda: Insecta	Coleoptera	Elmidae	riffle beetles	53.8
Roque River	3	2018-10-05	В	Zaitzevia	А	insect	Aquatic	Arthropoda: Insecta	Coleoptera	Elmidae	riffle beetles	26.9
Roque River	3	2018-10-05	в	Narpus concolor	L	insect	Aquatic	Arthropoda: Insecta	Coleoptera	Elmidae	riffle beetles	53.8
Roque River	3	2018-10-05	B	Ontioservus	1	insect	Aquatic	Arthropoda: Insecta	Coleontera	Elmidae	riffle heetles	1479 5
Roque River	3	2018-10-05	B	Zaitzevia	1	insect		Arthropoda: Insecta	Coleoptera	Elmidae	riffle beetles	205.0
Roque River	3	2018-10-05	B	Nemata	й.	non-insect		Nemata	miscellaneous non-insect	v	round worms	53.8
Pogue River	3	2018 10 05	B	Crangony		non-insect	Aquatic	Crustacea: Amphipoda	v	Crangenvetidae	coude	26.0
Rogue River	3	2018 10 05	B	Ostracoda		non insect	Aquatic	Crustacea: Ampripoua	*	v	soud chrimp	199.3
	3	2018-10-05	D	Olizashasta	0	non-insect	Aquatic	Annelide: Olinesheete	X	X	seeu siininp	100.3
Rogue River	3	2018-10-05	В	Digochaeta	0	non-insect	Aquatic	Annelida: Oligochaeta	miscellaneous non-insect	X Dhuaidea	segmented worms	2528.0
Rogue River	3	2018-10-05	в	Physella	0	non-insect	Aquatic	Mollusca: Gastropoda	x	Physidae	snalls	349.7
Rogue River	3	2018-10-05	в	Juga	U	non-insect	Aquatic	Mollusca: Gastropoda	X	Pleuroceridae	snalls	376.6
Rogue River	3	2018-10-05	В	Claassenia sabulosa	L	insect	Aquatic	Arthropoda: Insecta	Plecoptera	Perlidae	stoneflies	1.345
Rogue River	3	2018-10-05	В	Perlodidae	L	insect	Aquatic	Arthropoda: Insecta	Plecoptera	Perlodidae	stoneflies	1.345
Rogue River	3	2018-10-05	В	Skwala	L	insect	Aquatic	Arthropoda: Insecta	Plecoptera	Perlodidae	stoneflies	1.345
Rogue River	5	2018-10-05	В	Simulium	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Simuliidae	black flies	161.4
Rogue River	5	2018-10-05	В	Brachycentrus occidentalis	L	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Brachycentridae	caddisflies	53.8
Rogue River	5	2018-10-05	В	Hydropsyche	L	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Hydropsychidae	caddisflies	53.8
Rogue River	5	2018-10-05	В	Hydroptila	Р	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Hydroptilidae	caddisflies	107.6
Roque River	5	2018-10-05	В	Trepaxonemata	U	non-insect	Aquatic	Turbellaria	miscellaneous non-insect	x	flat worms	3228
Roque River	5	2018-10-05	В	Helobdella	U	non-insect	Aquatic	Annelida: Hirudinea	miscellaneous non-insect	Glossiphoniidae	leeches	1.345
Roque River	5	2018-10-05	в	Acentrella insignificans	Ĺ	insect	Aquatic	Arthropoda: Insecta	Ephemeroptera	Baetidae	mavflies	53.8
Roque River	5	2018-10-05	B	Baetis tricaudatus complex	ī	insect	Aquatic	Arthropoda: Insecta	Ephemeroptera	Baetidae	mavflies	107.6
Roque River	5	2018-10-05	B	Enhemerella excrucians group	ī	insect	Aquatic	Arthropoda: Insecta	Enhemerontera	Enhemerellidae	mayflies	161.0
Roque River	5	2018-10-05	B	Chironomidae	P	insect		Arthropoda: Insecta	Dintera	Chironomidae	midaes	107.6
Pogue River	5	2018 10 05	B	Polypodilum	÷	insect	Aquatic	Arthropoda: Insecta	Diptora	Chironomidae: Chironominae	midges	501.8
Rogue River	5	2018 10 05	B	Cricotopus	1	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	53.8
Rogue River	5	2010-10-03	D	Criectopus	1	insect	Aquatio	Arthropoda: Insecta	Diptera	Chironomidae: Orthooladiinae	midges	600.4
Rogue River	5	2010-10-03	D	Eukiofferielle brohmi group	1	insect	Aquatio	Arthropoda: Insecta	Diptera	Chironomidae: Orthooladiinae	midges	099.4
	5	2016-10-05	Б		L .	insect	Aquatic	Arthropoda. Insecta	Diptera	Chironomidae. Orthocladimae	muges	209
Rogue River	5	2018-10-05	В	Eukienenena cianpennis group	L .	Insect	Aquatic	Anthropoda: Insecta	Diptera	Chironomidae: Onnociadimae	mages	209
Rogue River	5	2018-10-05	в	Euklemeriella devonica group	L	Insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthociadiinae	midges	215.2
Rogue River	5	2018-10-05	в	Orthocladius	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	591.8
Rogue River	5	2018-10-05	в	Synorthocladius	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	107.6
Rogue River	5	2018-10-05	В	I hienemanniella	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	53.8
Rogue River	5	2018-10-05	В	Nilotanypus	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Tanypodinae	midges	53.8
Rogue River	5	2018-10-05	В	Oribatida	U	non-insect	Aquatic	Arachnida: Acari	x	x	mites	322.8
Rogue River	5	2018-10-05	В	Sperchon	U	non-insect	Aquatic	Arachnida: Acari	x	x	mites	107.6
Rogue River	5	2018-10-05	В	Sphaeriidae	U	non-insect	Aquatic	Mollusca: Bivalvia	x	Sphaeriidae	pea clams	269
Rogue River	5	2018-10-05	В	Optioservus	L	insect	Aquatic	Arthropoda: Insecta	Coleoptera	Elmidae	riffle beetles	430.4
Rogue River	5	2018-10-05	в	Crangonyx	U	non-insect	Aquatic	Crustacea: Amphipoda	x	Crangonyctidae	scuds	2636.2
Rogue River	5	2018-10-05	В	Ostracoda	U	non-insect	Aquatic	Crustacea: Ostracoda	x	x	seed shrimp	860.8
Roque River	5	2018-10-05	В	Oligochaeta	U	non-insect	Aquatic	Annelida: Oligochaeta	miscellaneous non-insect	х	seamented worms	5111
Roque River	5	2018-10-05	в	Fluminicola	Ú	non-insect	Aquatic	Mollusca: Gastropoda	x	Hydrobiidae	snails	5003 4
Roque River	5	2018-10-05	B	Lanx	ū	non-insect	Aquatic	Mollusca: Gastropoda	x	Lymnaeidae	snails	1 345
Roque River	5	2018_10_05	B	Physella	ũ	non-insect		Mollusca: Gastropoda	x	Physidae	snails	1805 9
Roque River	5	2018-10-05	B	Helisoma	ü	non-insect		Mollusca: Gastropoud	×	Planorhidae	enaile	4050.0
Roque Divor	5	2018-10-03	B	Monotus	ü	non-incost	Aquatic	Mollusca: Gastropoda	×	Planorbidae	enaile	1.040
Roque River	5	2010-10-00	5	lugo		non incost	Aquatic	Mollusca: Gastropoda	<u>^</u>	Plaurocoridao	snails	100.0
Rogue River	5	2010-10-05	D D	Juya	0	non-insect	Aqualic	wollusca. Gastropoda	^	r ieui ocei iuae	SIIdiiS	101.4

Waterbody	Station	Date	Replicate	Taxon	Stage	Insect	Origin	Higher.classification	Order	Family	Common.name	Abundance
Rogue River	7	2018-10-05	В	Simulium	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Simuliidae	black flies	515.8344
Rogue River	7	2018-10-05	В	Simulium	Р	insect	Aquatic	Arthropoda: Insecta	Diptera	Simuliidae	black flies	30.3432
Rogue River	7	2018-10-05	В	Brachycentrus occidentalis	L	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Brachycentridae	caddisflies	30.3432
Rogue River	7	2018-10-05	В	Glossosoma	L	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Glossosomatidae	caddisflies	91.0296
Rogue River	7	2018-10-05	В	Hydropsyche	L	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Hydropsychidae	caddisflies	1001.3256
Rogue River	7	2018-10-05	В	Lepidostoma (Neodinarthrum)	L	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Lepidostomatidae	caddisflies	121.3728
Rogue River	7	2018-10-05	В	Ceraclea	L	insect	Aquatic	Arthropoda: Insecta	Trichoptera	Leptoceridae	caddisflies	1.345
Rogue River	7	2018-10-05	В	Hemerodromia	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Empididae	dance flies	60.6864
Rogue River	7	2018-10-05	В	Trepaxonemata	U	non-insect	Aquatic	Turbellaria	miscellaneous non-insect	х	flat worms	1759.9056
Rogue River	7	2018-10-05	В	Acentrella insignificans	L	insect	Aquatic	Arthropoda: Insecta	Ephemeroptera	Baetidae	mayflies	91.0296
Rogue River	7	2018-10-05	В	Baetis tricaudatus complex	L	insect	Aquatic	Arthropoda: Insecta	Ephemeroptera	Baetidae	mayflies	3641.184
Rogue River	7	2018-10-05	В	Drunella grandis	L	insect	Aquatic	Arthropoda: Insecta	Ephemeroptera	Ephemerellidae	mayflies	1.345
Rogue River	7	2018-10-05	В	Ephemerella excrucians group	L	insect	Aquatic	Arthropoda: Insecta	Ephemeroptera	Ephemerellidae	mayflies	394.4616
Rogue River	7	2018-10-05	В	Chironomidae	Р	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae	midges	758.58
Rogue River	7	2018-10-05	В	Microtendipes pedellus group	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Chironominae	midges	121.3728
Rogue River	7	2018-10-05	В	Polypedilum	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Chironominae	midges	364.1184
Rogue River	7	2018-10-05	В	Tanytarsus	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Chironominae: Tanytarsini	midges	60.6864
Rogue River	7	2018-10-05	В	Cardiocladius	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	515.8344
Rogue River	7	2018-10-05	В	Cricotopus	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	364.1184
Rogue River	7	2018-10-05	В	Cricotopus trifascia group	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	182.0592
Rogue River	7	2018-10-05	В	Eukiefferiella brehmi group	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	91.0296
Rogue River	7	2018-10-05	В	Eukiefferiella claripennis group	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	364.1184
Rogue River	7	2018-10-05	В	Eukiefferiella devonica group	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	121.3728
Rogue River	7	2018-10-05	В	Eukiefferiella pseudomontana group	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	30.3432
Rogue River	7	2018-10-05	В	Orthocladius	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	394.4616
Rogue River	7	2018-10-05	В	Rheocricotopus	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	60.6864
Rogue River	7	2018-10-05	В	Synorthocladius	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	30.3432
Rogue River	7	2018-10-05	В	Tvetenia vitracies group	L	insect	Aquatic	Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	60.6864
Rogue River	7	2018-10-05	В	Sperchon	U	non-insect	Aquatic	Arachnida: Acari	x	x	mites	151.716
Rogue River	7	2018-10-05	В	Optioservus	L	insect	Aquatic	Arthropoda: Insecta	Coleoptera	Elmidae	riffle beetles	697.8936
Rogue River	7	2018-10-05	В	Zaitzevia	L	insect	Aquatic	Arthropoda: Insecta	Coleoptera	Elmidae	riffle beetles	30.3432
Rogue River	7	2018-10-05	В	Nemata	U	non-insect	Aquatic	Nemata	miscellaneous non-insect	x	round worms	30.3432
Rogue River	7	2018-10-05	В	Crangonyx	U	non-insect	Aquatic	Crustacea: Amphipoda	x	Crangonyctidae	scuds	515.8344
Rogue River	7	2018-10-05	В	Ostracoda	U	non-insect	Aquatic	Crustacea: Ostracoda	x	x	seed shrimp	30.3432
Rogue River	7	2018-10-05	В	Oligochaeta	U	non-insect	Aquatic	Annelida: Oligochaeta	miscellaneous non-insect	х	segmented worms	2093.6808
Rogue River	7	2018-10-05	В	Galba	U	non-insect	Aquatic	Mollusca: Gastropoda	x	Lymnaeidae	snails	1.345
Rogue River	7	2018-10-05	В	Physella	U	non-insect	Aquatic	Mollusca: Gastropoda	x	Physidae	snails	303.432
Rogue River	7	2018-10-05	В	Juga	U	non-insect	Aquatic	Mollusca: Gastropoda	x	Pleuroceridae	snails	1.345
Rogue River	7	2018-10-05	В	Sweltsa	L	insect	Aquatic	Arthropoda: Insecta	Plecoptera	Chloroperlidae	stoneflies	1.345
Rogue River	7	2018-10-05	В	Calineuria californica	L	insect	Aquatic	Arthropoda: Insecta	Plecoptera	Perlidae	stoneflies	1.345
Rogue River	7	2018-10-05	В	Claassenia sabulosa	L	insect	Aquatic	Arthropoda: Insecta	Plecoptera	Perlidae	stoneflies	30.3432
Rogue River	7	2018-10-05	В	Hesperoperla pacifica	L	insect	Aquatic	Arthropoda: Insecta	Plecoptera	Perlidae	stoneflies	1.345

Taxon	Stage	Insect.	Origi	in Higher.classification	Order	Family	Common.name	BCG.Attribute	Feeding.Group	CA.feeding.group	Habit	Folerance WY.HBI	PSSB.tolerance	CA.tolerance	HDG.tolerance	BCI.TV	PSSB.long.lived	Voltinism	Development	Occurrence.in.drift	Size.at.maturity	Rheophily	Thermal.preference	a b
Olicochaeta	U U	non-insec	t Aqua	auc Nemata atic Annelida: Olioochaeta	miscellaneous non-insect	x	round worms		1 CG	PR CG	BU U		5 0			108	0	4	2 2		2	2	2	0.0758 0.74
Prostoma	ŭ	non-insec	t Aqua	atic Annelida: Nemertea	miscellaneous non-insect	Tetrastemmatidae	nemerteans		5 PR	PR	SP (,		า 8		110	0	2	2		1	1	2	0.0758 0.74
Protzia	ū	non-insec	t Aqui	atic Arachnida: Acari	x	x	mites		3 PA	PR	sw r	NT I	5 0	5 8		108	ō	3	2	2	1	2	2	0.053 2.494
Lebertia	Ú.	non-insec	t Aqua	atic Arachnida: Acari	х	x	mites		4 PA	PR	SW I	IT TN	5 C	o a	ı c	108	0	3	3 2	2	! 1	2	2	0.053 2.494
Sperchon	U	non-insec	t Aqua	atic Arachnida: Acari	x	x	mites		4 PA	PR	SW I	NT :	5 C	B C	1 C	108	0	3	3 2	2	! 1	2	2	0.053 2.494
Atractides	U	non-insec	t Aqua	atic Arachnida: Acari	X	X	mites		4 PA	PR	SW I	ит н	5 0	8		108	0	3	3 2	2	1	2	2	0.053 2.494
Acentrelia Insignificans	1	insect	Aqua	alic Anthropoda: Insecta	Ephemeroptera	Baelidae	maynies		100	00				. 4		72	0	3		4		4	2	0.0052 2.75
Drunella grandis	ĩ	insect	Aqua	atic Arthropoda: Insecta	Ephemeroptera	Ephemerellidae	mayflies		2 PR	CG	CL (, ,	1 0	5 0		24	0	2	2	. 1	3	3	2	0.0019 3.46
Ephemerella excrucians group	L	insect	Aqui	atic Arthropoda: Insecta	Ephemeroptera	Ephemerellidae	mayflies		4 CG	CG	CL 0	, · ·	1 0	1 1		48	0	2	2 2	2	2	2	2	0.0097 2.663
Epeorus	L	insect	Aqu	atic Arthropoda: Insecta	Ephemeroptera	Heptageniidae	mayflies	:	3 SC	SC	CL () () O) C	21	0	2	2 1	1	2	3	1	0.0108 2.754
Rhithrogena	L	insect	Aqu	atic Arthropoda: Insecta	Ephemeroptera	Heptageniidae	mayflies		3 SC	SC	CL () (o 0) (21	0	2	2 1	2	2	3	2	0.0108 2.754
Sweltsa	-	insect	Aqua	atic Arthropoda: Insecta	Plecoptera	Chloroperlidae	stoneflies		S PK	PR	BU (J 1		24	0	1	2	2	2	2	2	0.0065 2.724
Califeuria californica Rededideo	1	insect	Aqua	alic Anthropoda: Insecta	Piecopiera	Perildae	stoneflies		2 PR	PR			2 0	. 2		24	0		2		3	3	2	0.0099 2.8/9
Isoperia	ĩ	insect	Aqua	atic Arthropoda: Insecta	Piecopiera	Periodidae	stoneflies		3 PR	PR		, ,	2 0	1 2		40	0	2	2		2	2	2	0.0196 2.742
Brachycentrus occidentalis	L	insect	Aqui	atic Arthropoda: Insecta	Trichoptera	Brachycentridae	caddisflies		3 OM	OM	CL 0	, · ·	1 0) 1		24	0	2	2 2	. 1	2	3	2	0.0025 3.443
Glossosoma	L	insect	Aqu	atic Arthropoda: Insecta	Trichoptera	Glossosomatidae	caddisflies		3 SC	SC	CL () .	1 C) 1		24	0	3	3 3	1	2	3	2	0.0082 2.958
Glossosoma	Р	insect	Aqua	atic Arthropoda: Insecta	Trichoptera	Glossosomatidae	caddisflies	:	3 SC	SC	CL () .	1 C	0 1	. c	24	0	3	3 3	1	2	3	2	0.0082 2.958
Hydropsyche	L .	insect	Aqua	atic Arthropoda: Insecta	Trichoptera	Hydropsychidae	caddisflies		4 CF	CF	CL () 4	4 0	9 4		108	0	2	2 2	2	2	3	2	0.0046 2.926
Ceraclea	-	insect	Aqua	atic Arthropoda: Insecta	Trichoptera	Leptocendae	caddisflies		1 CG	OM DU	CM () i	• •	J 4		18	0	2	2 2	1	2	2	2	0.0034 3.212
Lepidostoma (Neodinarthrum)	ĩ	insect	Aqua	atic Arthropoda: Insecta	Trichoptera	Lenidostomatidae	caddisflies		3.06	SH	CM ()	1 0	1 1		18	0	2	2	1	2	2	2	0.0079 2.649
Narpus concolor	L	insect	Aqui	atic Arthropoda: Insecta	Coleoptera	Elmidae	riffle beetles		4 CG	CG	CL 0) 4	4 0) 4		104	0	1	1 3	1	2	2	2	0.0074 2.879
Optioservus	L	insect	Aqu	atic Arthropoda: Insecta	Coleoptera	Elmidae	riffle beetles		4 SC	SC	CL I	، TN	4 C) 4	, с	104	0	1	1 3	2	! 1	2	2	0.0074 2.879
Optioservus	A	insect	Aqu	atic Arthropoda: Insecta	Coleoptera	Elmidae	riffle beetles		4 CG	SC	CL I	TN	4 0	9 4		104	0	1	3	2	1	2	2	0.00093 6.18
Zaitzevia	-	insect	Aqua	atic Arthropoda: Insecta	Coleoptera	Elmidae	nittle beetles		3 CG	SC	CL I	4T 1	5 (J 4		104	0	1	1 3	2	1	2	2	0.0074 2.879
Simulium	i i	insect	Aqua	alic Anthropoda: Insecta atic Arthropoda: Insecta	Diptera	Simulidae	black flies		4 CF	PR CF	CI (5 U			108	0	3	2		1 1	3	2	0.0054 2.546
Chironomidae	P	insect	Aqu	atic Arthropoda: Insecta	Diptera	Chironomidae	midges		4 CG	CG	BU (5 C	5 6		108	ō	3	1	3	1	2	2	0.0018 2.617
Cricotopus (Nostococladius)	L	insect	Aqu	atic Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	:	3 UN	CG	BU I	NI :	з с	0 1	. c	108	0	3	3 1	3	1	2	1	0.0018 2.617
Cricotopus	L	insect	Aqua	atic Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges		4 CG	CG	CL () :	7 C	0 7	· c	108	0	3	3 1	3	1 1	2	2	0.0018 2.617
Diamesa Eukiofferiollo brobs:	L	insect	Aqua	atic Arthropoda: Insecta	Diptera	Chironomidae: Diamesinae	midges		3 CG	CG	SP I	41 4	5 0	2		108	0	3	1	3	2	2	1	0.0018 2.617
Eukiefferiella clarinennis group	L.	insect	Aqui	auc Authropoda: Insecta atic Arthropoda: Insecta	Diptera	Chironomidae: Orthocladinae Chironomidae: Orthocladinae	midges		106	OM	SP I	ит 1	, U	ט אין אין אין אין אין אין		108	0	3 0	, 1 , 1	2	1	2	2	0.0018 2.01/
Eukiefferiella devonica group	ĩ	insect	Aqua	atic Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges		4 CG	OM	SP (5 8		108	0	3	. 1		, i	2	2	0.0018 2.617
Micropsectra	L	insect	Aqua	atic Arthropoda: Insecta	Diptera	Chironomidae: Chironominae: Tanytarsini	midges		4 CG	CG	CL (7 ŭ	J 7	, č	108	0	3	· ·	3	ı 1	2	2	0.0018 2.617
Nanocladius	L	insect	Aqu	atic Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges		4 CG	CG	SP () :	з с	D 3	ı c	108	0	3	3 1	3	1 1	2	2	0.0018 2.617
Orthocladius	L	insect	Aqu	atic Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges		3 CG	CG	SP () (5 C	5 6		108	0	3	3 1	3	1	2	2	0.0018 2.617
Potypealum	L	insect	Aqua	atic Arthropoda: Insecta	Diptera	Chironomidae: Chironominae	midges		1 MH	MH	CL () //T	5 C	. 6		108	0	3	1		1	2	2	0.0208 2.617
Fohemerella tibialis	ĩ	insect	Aqui Aqui	alic Arthropoda Insecta	Enhemerontera	Enhemerellidae	mayfiles		3.06	00			, u	. / 1 2		108	0	1	. 2		. 3	2	2	0.0200 3.03
Hesperoperla pacifica	ĩ	insect	Aqui	atic Arthropoda: Insecta	Plecoptera	Peridae	stoneflies		3 PR	PR	CL (2 0	2	i č	18	ő	1	i 3	i	3	3	2	0.0099 2.879
Claassenia sabulosa	L	insect	Aqu	atic Arthropoda: Insecta	Plecoptera	Perlidae	stoneflies	:	3 PR I	PR	CL () :	з с	D 3	i C	6	0	1	1 3	1	3	3	2	0.0099 2.879
Skwala	L	insect	Aqua	atic Arthropoda: Insecta	Plecoptera	Periodidae	stoneflies	:	3 PR	PR	CL () :	2 0	0 2	: c	18	0	2	2 2	: 1	3	2	2	0.0196 2.742
Pteronarcys californica	L	insect	Aqu	atic Arthropoda: Insecta	Plecoptera	Pteronarcyidae	stoneflies		3 SH	OM	SP () .	1 0	1	0	18	0	1	2	2	3	2	2	0.0324 2.573
I repaxonemata Complideo	U I	non-insec	Aqua Aqua	atic Turbellaria	miscellaneous non-insect	X Conniideo	flat worms		1 PK	PK	CL U) i		J 4		108	0	2	2 2		2	2	2	0.0082 2.168
Amiocentrus aspilus	ĩ	insect	Aqua	atic Arthropoda: Insecta	Trichoptera	Brachycentridae	caddisflies		3.06	CG	CI (3 0	1 3		24	0	2	2		2	2	2	0.0083 2.818
Cheumatopsyche	ĩ	insect	Aqua	atic Arthropoda: Insecta	Trichoptera	Hydropsychidae	caddisflies		5 CF	CF	CL I	ит і	3 G	5 5	i č	108	ō	3	3 3	2	2	3	2	0.0046 2.926
Potthastia gaedii group	L	insect	Aqu	atic Arthropoda: Insecta	Diptera	Chironomidae: Diamesinae	midges		4 CG	CG	SP () :	2 0) 2	: 0	108	0	3	3 1	3	i 1	2	2	0.0018 2.617
Synorthocladius	L	insect	Aqu	atic Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges	-	3 CG	CG	SP () :	2 0) 2	: C	108	0	3	3 1	3	1 1	2	2	0.0018 2.617
Tvetenia bavarica group	L.	insect	Aqua	atic Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges		4 CG	CG	SP () // /	5 0	5		108	0	3	1	. 3	1	2	2	0.0018 2.617
Laucotrichia	ï	insect	Aqui	atic Arthropoda: Insecta	A Trichontera	A Hudrontilidae	caddieflige		190	5C	CI (NI .				108	0	-	2		1	2	2	0.0056 2.839
Lepidostoma-panel case larvae	ĩ	insect	Aqui	atic Arthropoda: Insecta	Trichoptera	Lepidostomatidae	caddisflies		4 SH :	SH	CM (5	1 0	1	, i	18	0	2	1		2	1	2	0.0079 2.649
Psychomyia	L	insect	Aqu	atic Arthropoda: Insecta	Trichoptera	Psychomyiidae	caddisflies	:	3 SC	CG	CL () :	2 0) 2	: c	108	0	2	2 2	: 1	2	2	2	0.0039 2.873
Rhyacophila malkini	P	insect	Aqu:	atic Arthropoda: Insecta	Trichoptera	Rhyacophilidae	caddisflies	:	3 PR	PR	CL () () 1		18	0	2	2 2	: 1	3	3	2	0.0099 2.48
Cricotopus trifascia group	L	insect	Aqu	atic Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges		4 CG	CG	CL I	UT I	5 C	0 7		108	0	3	3 1	3	1	2	2	0.0018 2.617
Thienemanniella Rhussenhäs hrunnsstvermes group	1	insect	Aqua	atic Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae Bhuasanhilidae	midges		4 CG	CG	SP (B (0 6		108	0	3	3 1		1	2	2	0.0018 2.617
Petrophia	ĩ	insect	Aqua	atic Arthropoda: Insecta	Lenidoptera	Pyralidae	aquatic moths		4 SC	SC		, ит :	5 0			72	0	2	2 2		2	3	2	0.0033 2.48
Crangonyx	ū	non-insec	t Aqua	atic Crustacea: Amphipoda	x	Crangonyctidae	scuds		5 CG	CG	SW I	NT 1	i c	5 4	i õ	108	ō	3	3 2		2	2	2	0.0058 3.015
Trombidiformes	U	non-insec	t Aqua	atic Arachnida: Acari	Trombidiformes	x	mites		4 PA	PR	SW () (5 C	0 5	i c	108	0	3	3 2	2	! 1	2	2	0.053 2.494
Baetis flavistriga complex	L	insect	Aqua	atic Arthropoda: Insecta	Ephemeroptera	Baetidae	mayflies		4 CG	CG	CL () '	4 C	0 4	L C	72	0	3	3 1	3	1 1	2	2	0.0053 2.875
Heptagenia	L .	insect	Aqua	atic Arthropoda: Insecta	Ephemeroptera	Heptageniidae	mayflies		4 SC	SC	CLI	MT 4	4 0	9 4		48	0	3	3 1	2	2	2	2	0.0108 2.754
Lentonhlehiidae	1	insect	Aqua	alic Anthropoda: Insecta	Ephemeroptera	Lentonhlehiidae	maynies		300	50 CG	SP I	ит і	2 U B D	J 2		40	0		2 1	-	2	2	2	0.0108 2.754
Zaitzevia	Ā	insect	Aqui	atic Arthropoda: Insecta	Coleoptera	Elmidae	riffle beetles		3 CG :	SC	CL I	NT I	3 0) 4	i i	104	0	1	3	. 2	1	2	2	0.00093 6.18
Paratanytarsus	L	insect	Aqu	atic Arthropoda: Insecta	Diptera	Chironomidae: Chironominae: Tanytarsini	midges		4 CF	CF	CL () (в с	5 6	i C	108	0	3	3 1	3	1	2	2	0.0018 2.617
Rheotanytarsus	L	insect	Aqu:	atic Arthropoda: Insecta	Diptera	Chironomidae: Chironominae: Tanytarsini	midges		4 CF	CF	CL () (5 C) 6	i 0	108	0	3	3 1	3	1 1	2	2	0.0018 2.617
Tvetenia vitracies group	L	insect	Aqu	atic Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges		4 CG	CG	SP (5 0	5		108	0	3	3 1	. 3	1	2	2	0.0018 2.617
Lanx Residenteeuro		non-insec	Aqua	alic Moliusca: Gastropoda	*	Asteridae	snalls		150	5C OM	en d					108	0	4	. 2		2	4	2	0.0208 3.03
Rhyacophila arnaudi	Ľ	insect	Aqua	atic Arthropoda: Insecta	Trichoptera	Rhvacophilidae	caddisflies		2 PR	PR	CL (5 0		18	0	2	2 2		2	2	2	0.0099 2.48
Physella	U	non-insec	t Aqui	atic Mollusca: Gastropoda	x	Physidae	snails		5 CG :	SC	CL I	нт н	з с	о а		108	0	3	3 2	2	2	2	3	0.0208 3.03
Ostracoda	U	non-insec	t Aqua	atic Crustacea: Ostracoda	х	x	seed shrimp		4 CG	CG	SW () (в с) 6	i 0	108	0	3	3 2	: 1	1	2	2	0.006753 2.27
Torrenticola	U	non-insec	t Aqua	atic Arachnida: Acari	X	X Lonidostemotidos	mites		4 PA	PR	SW 0		5 0	5		108	0	3	3 2	2	1	2	2	0.053 2.494
Chelifera/Metachela	1	insect	Aqua	alic Anthropoda: Insecta	Dintera	Empididae	dance flies		100	5H PR	SP (, , , , , , , , , , , , , , , , , , ,		10	0	4	2 2		2	2	2	0.0079 2.649
Cricotopus bicinctus group	Ē	insect	Aqua	atic Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges		4 CG	CG	CL I	ит	7 0	5 7		108	0	3	3 1	3	i 1	2	2	0.0018 2.617
Stenochironomus	L	insect	Aqu	atic Arthropoda: Insecta	Diptera	Chironomidae: Chironominae	midges		4 CG	CG	BU () (9 Č	0 5	i č	108	ō	3	s 1	3	i 1	1	2	0.0018 2.617
Goera archaon	L	insect	Aqu	atic Arthropoda: Insecta	Trichoptera	Goeridae	caddisflies		2 SC	SC	CL () :	3 0	1		110	0	2	2 1	1	2	2	2	0.0056 2.839
Corynoneura	L.	insect	Aqu	atic Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges		4 CG	CG	SP (/ C	J 7		108	0	3	s 1		1	2	2	U.0018 2.617
rknyacophila coloradensis group Sohaeriidae	L	nsect	Aqua Aqua	auc Arthropoda: Insecta atic Mollusca: Bivalvia	i ricnoptera x	rcnyacopnilidae Sobaeriidae	caddisflies nea clame		1 CF	CF	GL (BU (,	2 C	ע 2 ריי	. 0	18	0	2	2		3	3	2	0.0099 2.48
Oribatida	ŭ	non-insec	t Aqua	atic Arachnida: Acari	x	x	mites		4 PA	PR	sw o		5 0	5 5		108	0	3	3 2	2	. 1	2	2	0.053 2.494
Psychoda	É.	insect	Aqu	atic Arthropoda: Insecta	Diptera	Psychodidae	moth flies		5 CG	CG	BU i	-IT 1	o .	0 10) č	36	ō	3	3 1	1	1	1	3	0.0025 2.692
Simulium	Р	insect	Aqua	atic Arthropoda: Insecta	Diptera	Simuliidae	black flies		4 CF	CF	CL () (5 C	D 6	; c	108	0	3	3 1	3	1 1	3	2	0.002 3.011
Microtendipes pedellus group	L	insect	Aqu	atic Arthropoda: Insecta	Diptera	Chironomidae: Chironominae	midges		4 CF	CF	CL I	UT I	6 C	0 6		108	0	3	1	3	1	1	2	0.0018 2.617
Phaenopsectra	L.	insect	Aqua	atic Arthropoda: Insecta	Diptera	Chironomidae: Chironominae Bionomidae	midges		1 SC	8C 8C) AT 1		J /		108	0	3	s 1		1	1	2	0.0018 2.617
Sialis	Ľ	insect	Aqua	atic Arthropoda: Insecta	Megaloptera	Sialidae	alderflies		4 PR	PR	SP I	ит 4	4 0	. 4		72	0	1	2		3	1	2	0.0037 2.753
Atherix	L	insect	Aqua	atic Arthropoda: Insecta	Diptera	Athericidae	higher flies		4 PR	PR	SP () ,	4 G	0 2	. ā	24	0	1	1 2		2	2	2	0.0038 2.586
Fluminicola	U	non-insec	t Aqua	atic Mollusca: Gastropoda	x	Hydrobiidae	snails		4 SC	SC	CL I	IT I	в с	D 6	; c	108	0	1	1 2	: 1	1	2	2	0.0208 3.03
Cardiocladius	L	insect	Aqu	atic Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges		4 PR	PR	BU I	ит і	5 0	5 5		108	0	3	3 1	3	1	2	2	0.0018 2.617
Potthastia longimana group Rheocricotonus	L	insect	Aqua	atic Arthropoda: Insecta	Diptera	Chironomidae: Diamesinae Chironomidae: Orthopladiinae	midges		I CG	09	SP (J	2 0	2		108	0	3	1	3	1	2	2	0.0018 2.617
Thienemannimvia complex	i.	insect	Aqui	alic Arthropoda: Insecta	Diptera	Chironomidae: Ormocladinae Chironomidae: Tanynodinae	midges		1 PR	PR	SP (. 6 1 A		108	0	3	. 1	2	. 1	2	2	0.0018 2.017
Chloroperlidae	ĩ	insect	Aqui	atic Arthropoda: Insecta	Plecoptera	Chloroperlidae	stoneflies		3 PR	PR	BU 0		i č	. 1	i	24	0	2	2 2	: 1	2	2	2	0.0065 2.724
Menetus	U	non-insec	t Aqui	atic Mollusca: Gastropoda	x	Planorbidae	snails		4 SC	SC	CL I	ит н	в с	. 6	, <u> </u>	108	0	3	3 2	: i	1	2	2	0.0208 3.03
Testudacarus	U	non-insec	t Aqui	atic Arachnida: Acari	x	x	mites		4 PA	PR	SW 0) (5 C	5 5	; c	108	0	3	3 2	2	1	2	2	0.053 2.494
Protoptila	L P	insect	Aqua	atic Arthropoda: Insecta	Trichoptera Trichoptera	Glossosomatidae	caddisflies		1 SC	SC PH	CL () MT		J 1		32	0	3	3	1	1	3	2	0.0056 2.958
Nilotanypus	ĩ	insect	Aau	atic Arthropoda: Insecta	Diptera	Chironomidae: Tanyporfinae	midaes		4 PR	PR	SP /					108	0	3	3 1	. 4	. 1	2	2 2	0.0018 2.639
Helobdella	Ū	non-insec	t Aqua	atic Annelida: Hirudinea	miscellaneous non-insect	Glossiphoniidae	leeches		5 PR	PR	CL I	нт і	5 C		i č	108	0	2	2 2	: 1	2	2	2	0.000102 3.25
Hydraena	А	insect	Aqua	atic Arthropoda: Insecta	Coleoptera	Hydraenidae	moss beetles		4 SC	SC	CL () .	4 Č	0 5	i d	72	ō	2	2 3	. 1	1	2	2	0.04 2.64
Cricotopus (Isocladius) type 1	L.	insect	Aqu	atic Arthropoda: Insecta	Diptera	Chironomidae: Orthocladiinae	midges		4 CG	CG	CL ()	ζ (7		108	0	3	1	3	1	2	2	0.0018 2.617
Eukieneriella pseudomontana group	L	insect	Aqua	auc Arthropoda: Insecta	Diptera	Chironomidae: Orthocladinae Chironomidae: Chironominee	middes		1 UG	OM DR	51 46 S10 -	ин ИТ -		J 8		108	0	3	1	3	1	2	2	0.0018 2.617
Paratendipes	Ľ	insect	Aqua	atic Arthropoda: Insecta	Diptera	Chironomidae: Chironominae	midges		4 CG	CG	BU I	ит и		5 8		108	0	3	, 1 3 1		· · ·	1	2	0.0018 2.617
Tanytarsus	L	insect	Aqua	atic Arthropoda: Insecta	Diptera	Chironomidae: Chironominae: Tanytarsini	midges		4 CF	CF	CL I	ит	5 G	0 6	, č	108	0	3	3 1	3	1	2	2	0.0018 2.617
Galba	U	non-insec	t Aqua	atic Mollusca: Gastropoda	х	Lymnaeidae	snails		4 SC	SC	CL I	NT I	в с	в с	1 C	108	0	3	3 2	: 1	2	2	2	0.0208 3.03

Appendix E

Supplemental October 2018 Periphyton Results

Site	1	1*	2	2*	3	3*	4	4*	5	5*	6	6*	7	7*
1	100%													
1*	75%	100%												
2	65%	67%	100%											
2*	67%	66%	77%	100%										
3	68%	79%	64%	63%	100%									
3*	74%	84%	68%	69%	81%	100%								
4	59%	67%	57%	55%	68%	70%	100%							
4*	60%	70%	61%	56%	73%	71%	74%	100%						
5	61%	59%	57%	53%	51%	56%	42%	49%	100%					
5*	56%	52%	53%	50%	57%	54%	39%	46%	72%	100%				
6	68%	69%	62%	59%	74%	72%	67%	74%	62%	56%	100%			
6*	64%	62%	64%	62%	65%	64%	55%	62%	60%	66%	69%	100%		
7	64%	64%	59%	54%	56%	59%	46%	52%	69%	66%	62%	62%	100%	
7*	67%	71%	65%	63%	62%	65%	51%	62%	68%	62%	70%	68%	71%	100%

Table 1: Diatom percent community similarity (PSc) matrix between samples at October 2018 sampling sites

*Replicate

Site	Percent indifferent	Percent eutrophic	Percent eutrophic- mesotrophic	Percent mesotrophic	Percent mesotrophic- oligotrophic	Percent oligotrophic	Percent N fixers	Percent Indicative high N	Percent indicative low N	Percent indicative high P	Percent indicative low P	Percent unknown autecological attributes	
1	17.65	69.41	1.18	0.00	3.53	1.18	0.00	57.65	0.00	56.47	3.53	7.06	
1*	16.47	74.12	1.18	0.00	2.35	1.18	1.18	69.41	4.71	69.41	5.88	4.71	
2	19.17	63.33	6.67	0.00	1.67	0.00	3.33	53.33	11.67	53.33	11.67	9.17	
2*	33.06	54.55	4.96	0.00	0.00	0.83	2.48	52.89	4.96	52.89	4.96	6.61	
3	17.14	68.57	2.86	0.00	3.81	0.95	0.95	70.48	4.76	69.52	5.71	6.67	
3*	15.82	71.52	1.90	0.00	1.90	0.63	2.53	65.82	6.33	65.82	6.96	8.23	
4	18.32	73.82	2.62	0.00	0.00	0.52	0.00	75.92	2.09	75.92	1.57	4.71	
4*	26.47	61.76	4.41	0.00	2.94	0.00	0.00	75.00	2.45	75.00	4.90	4.41	
5	5.60	73.60	4.00	0.00	2.40	4.00	1.60	50.40	4.80	48.00	7.20	10.40	
5*	12.71	68.64	5.08	0.00	2.54	0.00	0.00	54.24	3.39	50.85	2.54	11.02	
6	11.69	72.73	3.90	0.00	2.60	1.30	0.65	61.69	3.25	60.39	4.55	7.79	
6*	14.79	69.72	5.63	0.00	0.70	0.00	0.00	64.79	2.11	54.23	1.41	9.15	
7	13.76	65.14	8.26	0.00	2.75	1.83	0.00	60.55	1.83	58.72	4.59	8.26	
7*	6.47	69.06	13.67	0.00	3.60	1.44	0.72	64.75	3.60	64.75	5.76	5.76	

Table 2: Summary table of descriptive diatom autecological attributes at October 2018 sampling sites

*Replicate

Site	Dominant taxon by cell density	Percent	Replicate dominant taxon by cell density	Replicate Percent			
	Nitzschia frustulum	35.5	Nitzschia frustulum	40.4			
1	Achnanthes minutissima	11.8	Cocconeis placentula	12.1			
	Cocconeis placentula	10.8	Oscillatoria sp.	10.1			
	Nitzschia frustulum	30.4	Nitzschia frustulum	31.0			
2	Achnanthes minutissima	8.8	Achnanthes minutissima	22.2			
	Navicula cryptocephala	6.4	Navicula cryptocephala	7.9			
	Nitzschia frustulum	41.2	Nitzschia frustulum	42.7			
3	Oscillatoria limosa	10.9	Cocconeis placentula	9.4			
	Navicula cryptocephala	8.4	Navicula cryptocephala	6.4			
	Nitzschia frustulum	58.3	Nitzschia frustulum	45.0			
4	Achnanthes minutissima	8.9	Nitzschia palea	16.3			
	Nitzschia palea	7.3	Achnanthes minutissima	5.3			
	Nitzschia frustulum	23.2	Nitzschia frustulum	20.3			
5	Cocconeis placentula	13.6	Rhoicosphenia curvata	13.6			
	Navicula cryptocephala veneta	10.4	Cocconeis placentula	11.9			
	Nitzschia frustulum	40.6	Nitzschia frustulum	35.0			
6	Fragilaria construens	6.5	Navicula cryptocephala	9.1			
	Cocconeis placentula	5.8	Melosira varians	8.4			
	Cocconeis placentula	20.9	Nitzschia frustulum	32.9			
7	Nitzschia frustulum	20.0	Nitzschia dissipata	12.9			
	Nitzschia dissipata	8.2	Cocconeis placentula	12.9			

Table 3: Dominant taxon by cell density at October 2018 sampling sites

Figure 1: Shannon's diversity and species richness of diatoms at October 2018 sampling sites

Figure 2: Percent sensitive and percent tolerant diatoms at October 2018 sampling sites

Figure 3: Periphyton Pollution Tolerance Index at October 2018 sampling sites

Figure 4: Median Substrate size and Percent A. minustissima at October 2018 sampling sites

Algae Identification Data

				Species	Count							Dep	oth Cou	int
Slide	Lake/River	Sample Date Site	Date Analyzed Species Name	Code	per taxa	Density	% Density	Biovolume	% Biovolume Group	Total Density To	otal Biovolume	TSI Ur	uits Un	its Type
Shac	Edite/TitleT			0000	per taxa	Density	,0 Densiej	Biovolume		rotal bensity it				10 1990
VR87	Rogue River	10/4/2018 R1	10/2//2018 Nitzschia frustulum	NZER	33	21501	35.5	3096110	13.9 diatom	60593	22261/59	72.2 m	NU	PERI
VR87	Rogue River	10/4/2018 R1	10/27/2018 Achnanthes minutissima	ACMN	11	7167	11.8	394181	1.8 diatom	60593	22261759	72.2 m	NU	PERI
VR87	Rogue River	10/4/2018 R1	10/27/2018 Cocconeis placentula	COPC	10	6515	10.8	2997076	13.5 diatom	60593	22261759	72.2 m	NU	PERI
VR87	Roque River	10/4/2018 B1	10/27/2018 Oscillatoria sp	OSXX	8	5212	8.6	5816934	26.1 bluegreen	60593	22261759	72.2 m	NU	PERI
1007	Rogue River	10/4/2010 11	10/27/2010 Oscillatoria sp.	DUCU	-	2212	5.0	201150	1.7 distant	00555	22201755	72.2 111	NU	DEDI
VR87	Rogue River	10/4/2018 RI	10/27/2018 Rhoicosphenia curvata	RHCU	5	3258	5.4	381150	1.7 diatom	60593	22261759	72.2 m	NU	PERI
VR87	Rogue River	10/4/2018 R1	10/2//2018 Navicula cryptocephala veneta	NVCV	4	2606	4.3	247585	1.1 diatom	60593	22261/59	72.2 m	NU	PERI
VR87	Rogue River	10/4/2018 R1	10/27/2018 Navicula cryptocephala	NVCR	4	2606	4.3	482138	2.2 diatom	60593	22261759	72.2 m	NU	PERI
VR87	Rogue River	10/4/2018 R1	10/27/2018 Achnanthes linearis	ACLN	3	1955	3.2	258009	1.2 diatom	60593	22261759	72.2 m	NU	PERI
VR87	Roque River	10/4/2018 B1	10/27/2018 Cymbella minuta	CMMN	2	1303	2.2	/82138	2.2 diatom	60593	22261759	72.2 m	NU	PERI
1007	Rogue River	10/4/2010 11	10/27/2010 Cymbelia minuta	NZDC	2	1303	2.2	402150		00555	22201755	72.2 111	NU	DEDI
VR87	Rogue River	10/4/2018 RI	10/27/2018 Nitzschia paleacea	NZPC	2	1303	2.2	12//02	0.6 diatom	60593	22261759	72.2 m	NU	PERI
VR87	Rogue River	10/4/2018 R1	10/27/2018 Gomphonema subclavatum	GFSB	2	1303	2.2	781846	3.5 diatom	60593	22261759	72.2 m	NU	PERI
VR87	Rogue River	10/4/2018 R1	10/27/2018 Navicula minuscula	NVML	2	1303	2.2	58638	0.3 diatom	60593	22261759	72.2 m	NU	PERI
VR87	Rogue River	10/4/2018 R1	10/27/2018 Fragilaria construens venter	FRCV	1	652	1.1	31274	0.1 diatom	60593	22261759	72.2 m	NU	PERI
VR87	Rogue River	10/4/2018 B1	10/27/2018 Gomphonema angustatum	GEAN	1	652	11	117277	0.5 diatom	60593	22261759	72.2 m	NU	PERI
1007	Regue River	10/4/2018 81	10/27/2018 Nitzschia amphibia	NI7A M4	1	652	1.1	62549	0.2 diatom	60503	22201755	72.2 m	NU	DEDI
VR87	Rogue River	10/4/2018 RI	10/27/2018 Nitzschia amphibia	INZAIVI	1	652	1.1	62548	0.3 diatom	60593	22261/59	72.2 m	NU	PERI
VR87	Rogue River	10/4/2018 R1	10/27/2018 Synedra rumpens	SNRM	1	652	1.1	91215	0.4 diatom	60593	22261759	72.2 m	NU	PERI
VR87	Rogue River	10/4/2018 R1	10/27/2018 Asterionella formosa	ASFO	1	652	1.1	143338	0.6 diatom	60593	22261759	72.2 m	NU	PERI
VR87	Rogue River	10/4/2018 R1	10/27/2018 Cymbella cymbiformes	CMCM	1	652	1.1	6269101	28.2 diatom	60593	22261759	72.2 m	NU	PERI
VP97	Roguo Rivor	10/4/2018 P1	10/27/2018 Molosira varians	MIVP	1	652	1.1	422500	1.9 diatom	60502	22261750	72.2 m	NU	DEDI
VI(87	Kogue Kiver	10/4/2018 11			1	0.02	1.1	423300	1.5 diatom	00393	22201733	72.2 111	140	FLN
VR88	Rogue River	10/4/2018 R1B	10/27/2018 Nitzschia frustulum	NZFR	40	18863	40.4	2263526	11.2 diatom	46685	20168488	/1.5 m	NU	PERI
VR88	Rogue River	10/4/2018 R1B	10/27/2018 Cocconeis placentula	COPC	12	5659	12.1	2603055	12.9 diatom	46685	20168488	71.5 m	NU	PERI
VR88	Rogue River	10/4/2018 R1B	10/27/2018 Oscillatoria sp.	OSXX	10	4716	10.1	4970326	24.6 bluegreen	46685	20168488	71.5 m	NU	PERI
VR88	Rogue River	10/4/2018 B1B	10/27/2018 Achnanthes minutissima	ACMN	7	3301	71	181554	0.9 diatom	46685	20168488	715 m	NU	PERI
1/000	Regue River	10/4/2018 818	10/27/2018 Navisula sportosanhala	NIVCD	,	2820	6.1	E22440	2.6 diatom	10005	20160400	71.5 m	NU	DEDI
VROO	KOgue Kivei	10/4/2018 KIB		NVCK	0	2829	0.1	525440	2.6 diatom	40065	20106466	71.5 111	NU	PERI
VR88	Rogue River	10/4/2018 R1B	10/2//2018 Navicula cryptocephala veneta	NVCV	5	2358	5.1	223995	1.1 diatom	46685	20168488	/1.5 m	NU	PERI
VR88	Rogue River	10/4/2018 R1B	10/27/2018 Cladophora sp.	CFXX	3	1415	3.0	2404996	11.9 green	46685	20168488	71.5 m	NU	PERI
VR88	Rogue River	10/4/2018 R1B	10/27/2018 Gomphonema subclavatum	GFSB	2	943	2.0	848822	4.2 diatom	46685	20168488	71.5 m	NU	PERI
VR88	Roque River	10/4/2018 B1B	10/27/2018 Nitzschia amphibia	NZAM	1	472	1.0	45271	0.2 diatom	46685	20168488	71.5 m	NU	PERI
1000	Rogue River	10/4/2010 110	10/27/2010 Mitzschla amphibia	CMCN	1	472	1.0	45271	0.2 diatom	40005	20100400	71.5 m	NU	DEDI
VR88	Rogue River	10/4/2018 RIB	10/27/2018 Cymbelia sinuata	CIVISIN	1	472	1.0	66020	0.3 diatom	40085	20168488	/1.5 m	NU	PERI
VR88	Rogue River	10/4/2018 R1B	10/27/2018 Scenedesmus abundans	SCAB	1	472	1.0	94314	0.5 green	46685	20168488	71.5 m	NU	PERI
VR88	Rogue River	10/4/2018 R1B	10/27/2018 Synedra mazamaensis	SNMZ	1	472	1.0	120721	0.6 diatom	46685	20168488	71.5 m	NU	PERI
VR88	Rogue River	10/4/2018 R1B	10/27/2018 Navicula minuscula	NVML	1	472	1.0	21221	0.1 diatom	46685	20168488	71.5 m	NU	PERI
VR88	Rogue River	10/4/2018 B1B	10/27/2018 Fragilaria construens	FRCN	1	472	1.0	316894	1.6 diatom	46685	20168488	715 m	NU	PERI
1000	Rogue River	10/4/2010 110	10/27/2010 Fragilaria construction	CNUU	-	472	1.0	020420	1.0 diatom	40005	20100400	71.5 m	NU	DEDI
VK88	Rogue River	10/4/2018 R1B	10/27/2018 Synedra ulha	SNUL	1	472	1.0	938420	4.7 diatom	46685	20168488	71.5 m	NU	PERI
VR88	Rogue River	10/4/2018 R1B	10/27/2018 Achnanthes lanceolata	ACLC	1	472	1.0	84882	0.4 diatom	46685	20168488	71.5 m	NU	PERI
VR88	Rogue River	10/4/2018 R1B	10/27/2018 Rhoicosphenia curvata	RHCU	1	472	1.0	55173	0.3 diatom	46685	20168488	71.5 m	NU	PERI
VR88	Rogue River	10/4/2018 R1B	10/27/2018 Epithemia turgida	FPTR	1	472	1.0	4008327	19.9 diatom	46685	20168488	71.5 m	NU	PERI
VD00	Regue River	10/4/2018 B1B	10/27/2018 Navigula ca	NIV/VV	-	472	1.0	70725	0.4 distor	46695	20169499	71 5 m	NU	DEDI
VROO	Rogue River	10/4/2018 KIB	10/27/2010 Navicula sp.	INVAA	1	472	1.0	70755		40065	20106466	71.5 111	NU	PERI
VK88	Rogue River	10/4/2018 R1B	10/27/2018 Gomphonema angustatum	GFAN	1	472	1.0	169764	0.8 diatom	46685	20168488	71.5 m	NU	PERI
VR88	Rogue River	10/4/2018 R1B	10/27/2018 Nitzschia communis	NZCM	1	472	1.0	21221	0.1 diatom	46685	20168488	71.5 m	NU	PERI
VR88	Rogue River	10/4/2018 R1B	10/27/2018 Fragilaria vaucheria	FRVA	1	472	1.0	135812	0.7 diatom	46685	20168488	71.5 m	NU	PERI
VR89	Rogue River	10/3/2018 B2	10/29/2018 Nitzschia frustulum	NZER	38	89130	30.4	11765217	5.9 diatom	293192	201040732	88.1 m	NU	PERI
1/0.00	Regue River	10/3/2018 82	10/20/2018 Ashpanthas minuticsima		11	25200	0.0	1410050	0.7 distorm	200102	2010/0722	00.1 m	NU	DEDI
VR89	Rogue River	10/3/2018 R2	10/29/2018 Actinations minutissima	ACIVIN	11	25801	8.8	1419050	0.7 diatom	293192	201040732	88.1 m	NU	PERI
VR89	Rogue River	10/3/2018 R2	10/29/2018 Navicula cryptocephala	NVCR	8	18764	6.4	3471396	1.7 diatom	293192	201040732	88.1 m	NU	PERI
VR89	Rogue River	10/3/2018 R2	10/29/2018 Cocconeis placentula	COPC	7	16419	5.6	7552632	3.8 diatom	293192	201040732	88.1 m	NU	PERI
VR89	Rogue River	10/3/2018 R2	10/29/2018 Navicula cryptocephala veneta	NVCV	6	14073	4.8	1336957	0.7 diatom	293192	201040732	88.1 m	NU	PERI
1/090	Poguo Pivor	10/2/2018 P2	10/20/2018 Nitzschia dissinata	NZDS	6	14072	1 9	2795609	1.9 diatom	202102	2010/0722	99.1 m	NU	DEDI
100	Rogue River	10/3/2018 12	10/20/2010 Frithernia commu	INZD3	0	14073	4.0	10042470		200100	201040732	00.1 11	NU	PERI
VR89	Rogue River	10/3/2018 R2	10/29/2018 Epithemia sorex	EPSX	4	9382	3.2	16043478	8.0 diatom	293192	201040732	88.1 m	NU	PERI
VR89	Rogue River	10/3/2018 R2	10/29/2018 Rhoicosphenia curvata	RHCU	3	7037	2.4	823284	0.4 diatom	293192	201040732	88.1 m	NU	PERI
VR89	Rogue River	10/3/2018 R2	10/29/2018 Synedra ulna	SNUL	3	7037	2.4	18203719	9.1 diatom	293192	201040732	88.1 m	NU	PERI
VR89	Rogue River	10/3/2018 R2	10/29/2018 Cymbella affinis	CMAE	3	7037	2.4	12665904	6.3 diatom	293192	201040732	88.1 m	NU	PERI
1/090	Roguo Rivor	10/2/2018 P2	10/20/2018 Achanthes lancoolata		2	7027	2.4	1266500	0.6 diatom	202102	2010/0722	99.1 m	NU	DEDI
VR09	KOgue Kivei	10/3/2018 K2	10/29/2018 Actinations fanceolata	ACLC	5	7037	2.4	1200590	0.6 diatom	295192	201040752	00.1 111	NU	PERI
VR89	Rogue River	10/3/2018 R2	10/29/2018 Nitzschia paleacea	NZPC	2	4691	1.6	459725	0.2 diatom	293192	201040732	88.1 m	NU	PERI
VR89	Rogue River	10/3/2018 R2	10/29/2018 Navicula tripunctata	NVTP	2	4691	1.6	5254005	2.6 diatom	293192	201040732	88.1 m	NU	PERI
VR89	Rogue River	10/3/2018 R2	10/29/2018 Navicula minima	NVMN	2	4691	1.6	206407	0.1 diatom	293192	201040732	88.1 m	NU	PERI
VR89	Rogue River	10/3/2018 B2	10/29/2018 Gomphoneis herculeana	GSHR	2	4691	16	25331808	12.6 diatom	293192	201040732	88.1 m	NU	PERI
1/0.00	Regue River	10/3/2018 82	10/20/2018 Nitzschip communic	NIZCM	-	4601	1.0	211000	0.1 distorm	200102	2010/0722	00.1 m	NU	DEDI
VR09	Rogue River	10/3/2018 K2	10/29/2018 Nitzschid Communis	NZCIVI	2	4091	1.0	211096	0.1 diatom	295192	201040752	00.1 111	NU	PERI
VR89	Rogue River	10/3/2018 R2	10/29/2018 Oscillatoria sp.	OSXX	2	4691	1.6	4362700	2.2 bluegreen	293192	201040732	88.1 m	NU	PERI
VR89	Rogue River	10/3/2018 R2	10/29/2018 Fragilaria construens venter	FRCV	2	4691	1.6	450343	0.2 diatom	293192	201040732	88.1 m	NU	PERI
VR89	Rogue River	10/3/2018 R2	10/29/2018 Navicula graciloides	NVGC	2	4691	1.6	2040618	1.0 diatom	293192	201040732	88.1 m	NU	PERI
VR80	Roque Pivor	10/3/2019 02	10/29/2018 Navicula minuscula	NIVAL	- 2	1601	1.6	211009	0.1 diatom	202102	2010/0722	88 1 m	NU	DEDI
1103	Nogue Niver	10/3/2010 RZ	10/20/2010 Wavicula IIIIIUScula		2	4091	1.0	211038		732137	201040732	00.1 111	NU	r LAI
vк89	коgue River	10/3/2018 R2	10/29/2018 Cymbella tumida	CWIM	2	4691	1.6	11/2/689	5.8 diatom	293192	201040732	88.1 m	NU	PERI
VR89	Rogue River	10/3/2018 R2	10/29/2018 Gomphonema subclavatum	GFSB	2	4691	1.6	2814645	1.4 diatom	293192	201040732	88.1 m	NU	PERI
VR89	Rogue River	10/3/2018 R2	10/29/2018 Ankistrodesmus falcatus	AKFL	1	2346	0.8	175915	0.1 green	293192	201040732	88.1 m	NU	PERI
VR89	Rogue River	10/3/2018 R2	10/29/2018 Cyclotella meneghiniana	CCMG	1	2346	0.8	891304	0.4 diatom	293192	201040732	88.1 m	NU	PERI
VR80	Roque Pivor	10/3/2019 P2	10/29/2018 Anabaona so	ΔΡΥΥ	1	2216	0.0	3190021	1.6 bluggroop	202102	2010/0722	88 1 m	NU	DEDI
1109	Nogue Niver	10/3/2010 RZ		ADAA	1	2340	0.8	2102221	TO DIGERICEII	732137	201040732	00.1 111	NU	LUU DEDI
vR89	Kogue River	10/3/2018 R2	10/29/2018 Calothrix sp.	кххх	1	2346	0.8	18/6430	0.9 bluegreen	293192	201040732	88.1 m	NU	PERI
VR89	Rogue River	10/3/2018 R2	10/29/2018 Rhopalodia gibba	RPGB	1	2346	0.8	60045767	29.9 diatom	293192	201040732	88.1 m	NU	PERI

				Species	Count							De	pth Cou	unt
Slide	Lake/River	Sample Date Site	Date Analyzed Species Name	Code	per taxa	Density	% Density	Biovolume	% Biovolume Group	Total Density T	otal Biovolume	TSI U	nits Un	its Type
	,	10/2/2010 22			p == 10.10	22.00		254024		202402	201010722	00.4		
VR89	Rogue River	10/3/2018 R2	10/29/2018 Navicula sp.	NVXX	1	2346	0.8	351831	0.2 diatom	293192	201040732	88.1 m	NU	PERI
VR89	Rogue River	10/3/2018 R2	10/29/2018 Fragilaria vaucheria	FRVA	1	2346	0.8	675515	0.3 diatom	293192	201040732	88.1 m	NU	PERI
VR89	Rogue River	10/3/2018 R2	10/29/2018 Nitzschia capitellata	NZCP	1	2346	0.8	844394	0.4 diatom	293192	201040732	88.1 m	NU	PERI
VR89	Rogue River	10/3/2018 R2	10/29/2018 Amphora perpusilla	AFPR	1	2346	0.8	389359	0.2 diatom	293192	201040732	88.1 m	NU	PERI
VR89	Rogue River	10/3/2018 R2	10/29/2018 Fragilaria pinnata	FRPN	1	2346	0.8	140732	0.1 diatom	293192	201040732	88.1 m	NU	PERI
VR89	Rogue River	10/3/2018 R2	10/29/2018 Navicula viridula	NVVR	1	2346	0.8	1055492	0.5 diatom	293192	201040732	88.1 m	NU	PERI
VR90	Rogue River	10/3/2018 R2B	10/29/2018 Nitzschia frustulum	NZFR	39	78505	31.0	11304792	15.3 diatom	253633	73968284	80.9 m	NU	PFRI
VR90	Rogue River	10/3/2018 R2B	10/29/2018 Achnanthes minutissima	ACMN	28	56363	22.2	3099961	4.2 diatom	253633	73968284	80.9 m	NU	PERI
VROO	Rogue River	10/3/2018 120	10/20/2018 Navigula cryptosophala	NIVCD	10	20120	7.0	2722070	F.O. distorm	255055	73060204	80.0 m	NU	DEDI
VR90	Rogue River	10/3/2018 K2B	10/29/2018 Navicula cryptocephala	NVCK	10	20150	7.9	5/259/9	5.0 diatom	255055	75906264	80.9 11	NU	PERI
VR90	Rogue River	10/3/2018 R2B	10/29/2018 Cocconeis placentula	COPC	8	16104	6.3	7407698	10.0 diatom	253633	/3968284	80.9 m	NU	PERI
VR90	Rogue River	10/3/2018 R2B	10/29/2018 Navicula cryptocephala veneta	NVCV	6	12078	4.8	1147388	1.6 diatom	253633	73968284	80.9 m	NU	PERI
VR90	Rogue River	10/3/2018 R2B	10/29/2018 Nitzschia dissipata	NZDS	5	10065	4.0	2707433	3.7 diatom	253633	73968284	80.9 m	NU	PERI
VR90	Rogue River	10/3/2018 R2B	10/29/2018 Calothrix sp.	KXXX	3	6039	2.4	4106441	5.6 bluegreen	253633	73968284	80.9 m	NU	PERI
VR90	Rogue River	10/3/2018 R2B	10/29/2018 Nitzschia paleacea	NZPC	2	4026	1.6	394540	0.5 diatom	253633	73968284	80.9 m	NU	PERI
VR90	Rogue River	10/3/2018 R2B	10/29/2018 Nitzschia volcanica	NZVI	2	4026	1.6	644148	0.9 diatom	253633	73968284	80.9 m	NU	PFRI
VR90	Rogue River	10/3/2018 R2B	10/29/2018 Fragilaria construens venter	FRCV	2	4026	1.6	1062844	1.4 diatom	253633	73968284	80.9 m	NU	PERI
VPOO	Rogue River	10/3/2018 N2B	10/29/2018 Cumbella affinis	CMAE	2	4020	1.0	7246661	9.9 diatom	255655	72069794	80.0 m	NU	DEDI
VI000	Rogue River	10/3/2018 128	10/20/2018 Cymbena annis	ACLC	2	4020	1.0	7240001	1.0 diatom	253033	73508284	80.9 m	NU	PERI
VR90	Rogue River	10/3/2018 R2B	10/29/2018 Acnnanthes lanceolata	ACLC	2	4026	1.6	724666	1.0 diatom	253633	/3968284	80.9 m	NU	PERI
VR90	Rogue River	10/3/2018 R2B	10/29/2018 Epithemia sorex	EPSX	2	4026	1.6	6884328	9.3 diatom	253633	73968284	80.9 m	NU	PERI
VR90	Rogue River	10/3/2018 R2B	10/29/2018 Navicula sp.	NVXX	1	2013	0.8	301944	0.4 diatom	253633	73968284	80.9 m	NU	PERI
VR90	Rogue River	10/3/2018 R2B	10/29/2018 Oscillatoria sp.	OSXX	1	2013	0.8	1248036	1.7 bluegreen	253633	73968284	80.9 m	NU	PERI
VR90	Rogue River	10/3/2018 R2B	10/29/2018 Fragilaria construens	FRCN	1	2013	0.8	225452	0.3 diatom	253633	73968284	80.9 m	NU	PERI
VR90	Rogue River	10/3/2018 R2B	10/29/2018 Nitzschia capitellata	NZCP	1	2013	0.8	724666	1.0 diatom	253633	73968284	80.9 m	NU	PFRI
VR90	Rogue River	10/3/2018 R2B	10/29/2018 Rhoicosphenia curvata	RHCU	1	2013	0.8	235516	0.3 diatom	253633	73968284	80.9 m	NU	PERI
VPOO	Rogue River	10/3/2018 N2B	10/29/2018 Happaga arcus	LINAR	1	2013	0.0	2533510	4.9 diatom	255655	72069794	80.0 m	NU	DEDI
VI000	Rogue River	10/3/2018 128	10/20/2018 Nitrashis samelikis	NZANA	1	2013	0.8	102244	4.8 diatom	253033	73508284	80.9 m	NU	PEN
VR90	Rogue River	10/3/2018 R2B	10/29/2018 Nitzschia amphibia	INZAIVI	1	2013	0.8	193244	0.3 diatom	253033	73968284	80.9 m	NU	PERI
VR90	Rogue River	10/3/2018 R2B	10/29/2018 Ankistrodesmus falcatus	AKFL	1	2013	0.8	201296	0.3 green	253633	/3968284	80.9 m	NU	PERI
VR90	Rogue River	10/3/2018 R2B	10/29/2018 Amphora perpusilla	AFPR	1	2013	0.8	334152	0.5 diatom	253633	73968284	80.9 m	NU	PERI
VR90	Rogue River	10/3/2018 R2B	10/29/2018 Navicula tripunctata	NVTP	1	2013	0.8	2254517	3.0 diatom	253633	73968284	80.9 m	NU	PERI
VR90	Rogue River	10/3/2018 R2B	10/29/2018 Synedra ulna	SNUL	1	2013	0.8	4005793	5.4 diatom	253633	73968284	80.9 m	NU	PERI
VR90	Rogue River	10/3/2018 R2B	10/29/2018 Epithemia turgida	EPTR	1	2013	0.8	8555086	11.6 diatom	253633	73968284	80.9 m	NU	PERI
VR90	Rogue River	10/3/2018 R2B	10/29/2018 Cymbella minuta	CMMN	1	2013	0.8	744796	1.0 diatom	253633	73968284	80.9 m	NU	PERI
VR90	Rogue River	10/3/2018 R2B	10/29/2018 Navicula graciloides	NVGC	1	2013	0.8	875638	1.2 diatom	253633	73968284	80.9 m	NU	PERI
VROO	Rogue River	10/3/2018 120	10/20/2018 Navigula minusquia	NIVAL	1	2013	0.0	00583	0.1 distorm	253633	73060204	80.0 m	NU	DEDI
VR90	Rogue River	10/3/2018 K2B		NVIVIL	1	2015	0.0	90565	0.1 diatom	255055	/5906264	80.9 11	NU	PERI
VR91	Rogue River	10/5/2018 R3	10/29/2018 Nitzschia frustulum	NZER	49	58354	41.2	8402928	12.8 diatom	141/16	65620722	80.0 m	NU	PERI
VR91	Rogue River	10/5/2018 R3	10/29/2018 Oscillatoria limosa	OSLS	13	15482	10.9	14397874	21.9 bluegreen	141716	65620722	80.0 m	NU	PERI
VR91	Rogue River	10/5/2018 R3	10/29/2018 Navicula cryptocephala	NVCR	10	11909	8.4	2203149	3.4 diatom	141716	65620722	80.0 m	NU	PERI
VR91	Rogue River	10/5/2018 R3	10/29/2018 Achnanthes minutissima	ACMN	7	8336	5.9	458493	0.7 diatom	141716	65620722	80.0 m	NU	PERI
VR91	Rogue River	10/5/2018 R3	10/29/2018 Cocconeis placentula	COPC	7	8336	5.9	3834669	5.8 diatom	141716	65620722	80.0 m	NU	PERI
VR91	Rogue River	10/5/2018 R3	10/29/2018 Navicula cryptocephala veneta	NVCV	3	3573	2.5	339404	0.5 diatom	141716	65620722	80.0 m	NU	PFRI
VR91	Rogue River	10/5/2018 B3	10/29/2018 Navicula tripunctata	NIVTP	3	3573	2.5	4001394	6.1 diatom	1/1716	65620722	80.0 m	NU	PERI
VR01	Rogue River	10/5/2018 13	10/20/2018 Fragilaria yausharia	EDV/A	3	3573	2.5	1227600	2.0 distorm	141710	65620722	80.0 m	NU	DEDI
VR91	Rogue River	10/5/2018 K3	10/29/2018 Flagiana vauchena	FRVA	5	3575	2.5	1557009	2.0 diatom	141/10	05020722	80.0 111	NU	PERI
VR91	Rogue River	10/5/2018 R3	10/29/2018 Nitzschia communis	NZCM	3	35/3	2.5	160770	0.2 diatom	141/16	65620722	80.0 m	NU	PERI
VR91	Rogue River	10/5/2018 R3	10/29/2018 Gomphonema subclavatum	GFSB	3	3573	2.5	2143604	3.3 diatom	141716	65620722	80.0 m	NU	PERI
VR91	Rogue River	10/5/2018 R3	10/29/2018 Rhoicosphenia curvata	RHCU	2	2382	1.7	278669	0.4 diatom	141716	65620722	80.0 m	NU	PERI
VR91	Rogue River	10/5/2018 R3	10/29/2018 Nitzschia dissipata	NZDS	2	2382	1.7	640699	1.0 diatom	141716	65620722	80.0 m	NU	PERI
VR91	Rogue River	10/5/2018 R3	10/29/2018 Diatoma vulgare	DTVL	1	1191	0.8	2334147	3.6 diatom	141716	65620722	80.0 m	NU	PERI
VR91	Rogue River	10/5/2018 R3	10/29/2018 Cymbella minuta	CMMN	1	1191	0.8	440630	0.7 diatom	141716	65620722	80.0 m	NU	PERI
VR91	Rogue River	10/5/2018 B3	10/29/2018 Comphoneis berculeana	GSHR	1	1191	0.8	6/30812	9.8 diatom	1/1716	65620722	80.0 m	NU	PERI
VP01	Rogue River	10/5/2018 NS	10/29/2018 Mologina varians	MIVP	1	1101	0.0	774070	1.2 diatom	141716	65620722	80.0 m	NU	DEDI
VIOI	Rogue River	10/5/2018 13		NZDI	1	1191	0.8	774073	1.2 diatom	141710	05020722	80.0 m	NU	PERI
VR91	Rogue River	10/5/2018 R3	10/29/2018 Nitzschia palea	NZPL	1	1191	0.8	214360	0.3 diatom	141/16	65620722	80.0 m	NU	PERI
VR91	Rogue River	10/5/2018 R3	10/29/2018 Nitzschia sp.	NZXX	1	1191	0.8	142907	0.2 diatom	141716	65620722	80.0 m	NU	PERI
VR91	Rogue River	10/5/2018 R3	10/29/2018 Calothrix sp.	KXXX	1	1191	0.8	9527129	14.5 bluegreen	141716	65620722	80.0 m	NU	PERI
VR91	Rogue River	10/5/2018 R3	10/29/2018 Caloneis ventricosa minuta	CAVM	1	1191	0.8	333450	0.5 diatom	141716	65620722	80.0 m	NU	PERI
VR91	Rogue River	10/5/2018 R3	10/29/2018 Synedra mazamaensis	SNMZ	1	1191	0.8	304868	0.5 diatom	141716	65620722	80.0 m	NU	PERI
VR91	Rogue River	10/5/2018 R3	10/29/2018 Frustulia rhomboides	ESRH	1	1191	0.8	1286162	2.0 diatom	141716	65620722	80.0 m	NU	PERI
VR91	Rogue River	10/5/2018 B3	10/29/2018 Nitzschia volcanica	NZVI	1	1191	0.8	1905/3	0.3 diatom	1/1716	65620722	80.0 m	NU	PERI
VP01	Rogue River	10/5/2018 NS	10/29/2018 Enithemia turgida	EDTD	1	1101	0.0	5061297	7.7 diatom	141716	65620722	80.0 m	NU	DEDI
VD01	Rogue River	10/5/2010 13	10/20/2018 Comphenena anguitation	CEAN	1	1101	0.0	214200	0.2 distor	141710	65620722	80.0 m	NU	DEDI
VK91	Rogue River	10/5/2018 K3	10/29/2018 Gomphonema angustatum	GFAN	1	1191	0.8	214360	0.3 diatom	141/16	05020722	80.0 m	NU	PERI
VR91	Rogue River	10/5/2018 R3	10/29/2018 Synedra rumpens	SNRM	1	1191	0.8	166725	0.3 diatom	141716	65620722	80.0 m	NU	PERI
VR92	Rogue River	10/5/2018 R3B	10/29/2018 Nitzschia frustulum	NZFR	73	138181	42.7	16581717	14.9 diatom	323684	111444663	83.8 m	NU	PERI
VR92	Rogue River	10/5/2018 R3B	10/29/2018 Cocconeis placentula	COPC	16	30286	9.4	13931671	12.5 diatom	323684	111444663	83.8 m	NU	PERI
VR92	Rogue River	10/5/2018 R3B	10/29/2018 Navicula cryptocephala	NVCR	11	20822	6.4	3852031	3.5 diatom	323684	111444663	83.8 m	NU	PERI
VR92	Rogue River	10/5/2018 R3B	10/29/2018 Achnanthes minutissima	ACMN	11	20822	6.4	1041090	0.9 diatom	323684	111444663	83.8 m	NU	PERI
VR92	Rogue River	10/5/2018 R3R	10/29/2018 Oscillatoria sp	OSXX	11	20822	6.4	20655217	18.5 bluegreen	323684	111444663	83.8 m	NU	PERI
VROD	Rogue Pivor	10/5/2019 020	10/20/2018 Navigula countocombala veneta	NVCV		7577	3.4	710200	0.6 distor	272604	111///662	83.0 m	NI I	DEDI
VINJZ	Pogue River	10/5/2010 N3D	10/20/2018 Cymbolia minuta	Chababi	4	7572	2.3	2261772	2.0 distor	222004	111444603	92 0	NU	DEDI
VR92	Rogue River	10/5/2018 838	10/29/2016 Cymbelia minuta	CIVIIVIN	4	15/2	2.3	5501//3	5.0 uidtom	323084	111444003	03.6	NU	PERI
VK92	Rogue River	10/5/2018 K3B	10/29/2018 Epitnemia sorex	EPSX	3	5679	1.8	6473684	5.8 diatom	323684	111444663	83.8 M	NU	PERI

				Species	Count							De	pth Cou	unt
Slide	Lake/River	Sample Date Site	Date Analyzed Species Name	Code	per taxa	Density	% Density	Biovolume	% Biovolume Group	Total Density T	otal Biovolume	TSI U	nits Un	uits Type
1/002	Do nuo Diuro	10/5/2010 020		N71/1	2	E 670	1.0	000507	0.0 distant	222004	1111444662	02.0	NU 1	DEDI
VR92	Rogue River	10/5/2018 R3B	10/29/2018 Nitzschia voicanica	NZVL	3	5679	1.8	908587	U.8 diatom	323684	111444663	83.8 m	NU	PERI
VR92	Rogue River	10/5/2018 R3B	10/29/2018 Fragilaria construens venter	FRCV	3	5679	1.8	1090305	1.0 diatom	323684	111444663	83.8 m	NU	PERI
VR92	Rogue River	10/5/2018 R3B	10/29/2018 Nitzschia amphibia	NZAM	3	5679	1.8	708698	0.6 diatom	323684	111444663	83.8 m	NU	PERI
VR92	Rogue River	10/5/2018 R3B	10/29/2018 Gomphonema subclavatum	GFSB	3	5679	1.8	4429363	4.0 diatom	323684	111444663	83.8 m	NU	PERI
VR92	Rogue River	10/5/2018 R3B	10/29/2018 Nitzschia paleacea	NZPC	3	5679	1.8	556510	0.5 diatom	323684	111444663	83.8 m	NU	PERI
VR92	Rogue River	10/5/2018 R3B	10/29/2018 Synedra ulna	SNUL	2	3786	1.2	7533703	6.8 diatom	323684	111444663	83.8 m	NU	PERI
VR92	Rogue River	10/5/2018 B3B	10/29/2018 Nitzschia dissinata	NZDS	2	3786	12	1527562	1.4 diatom	323684	111444663	83.8 m	NU	PERI
VP02	Rogue River	10/5/2010 100	10/29/2018 Synodra mazamaonsis	SNIM7	2	2796	1.2	060160	0.9 diatom	272694	111444662	92.9 m	NU	DEDI
1192	Rogue River	10/5/2018 R35	10/25/2010 Syneula mazamaensis	3141412	2	3780	1.2	303100	0.5 diatom	323084	111444003	83.8 111	140	FLIN
VR92	Rogue River	10/5/2018 R3B	10/29/2018 Gomphonema cievei	GFCL	2	3786	1.2	340720	0.3 diatom	323684	111444663	83.8 m	NU	PERI
VR92	Rogue River	10/5/2018 R3B	10/29/2018 Nitzschia communis	NZCM	2	3786	1.2	170360	0.2 diatom	323684	111444663	83.8 m	NU	PERI
VR92	Rogue River	10/5/2018 R3B	10/29/2018 Fragilaria vaucheria	FRVA	2	3786	1.2	2180609	2.0 diatom	323684	111444663	83.8 m	NU	PERI
VR92	Rogue River	10/5/2018 R3B	10/29/2018 Anabaena sp.	ABXX	2	3786	1.2	3861496	3.5 bluegreen	323684	111444663	83.8 m	NU	PERI
VR92	Rogue River	10/5/2018 R3B	10/29/2018 Nitzschia sp.	NZXX	1	1893	0.6	227147	0.2 diatom	323684	111444663	83.8 m	NU	PERI
VR92	Roque River	10/5/2018 B3B	10/29/2018 Navicula menisculus unsaliensis	NVMU	1	1893	0.6	388042	0.3 diatom	323684	111444663	83.8 m	NU	PERI
VP02	Rogue River	10/5/2010 100	10/29/2018 Epithomia turgida	EDTD	1	1902	0.0	9044792	7.2 diatom	222694	111444662	92.9 m	NU	DEDI
VI022	Rogue River	10/5/2018 K3B	10/20/2018 Epithernia turgida	LFTR	1	1893	0.0	6044783	7.2 diatom	323084	111444003	83.8 11	NU	PERI
VR92	Rogue River	10/5/2018 R3B	10/29/2018 Nitzschia capitellata	NZCP	1	1893	0.6	681440	U.6 diatom	323684	111444663	83.8 m	NU	PERI
VR92	Rogue River	10/5/2018 R3B	10/29/2018 Navicula minuscula	NVML	1	1893	0.6	85180	0.1 diatom	323684	111444663	83.8 m	NU	PERI
VR92	Rogue River	10/5/2018 R3B	10/29/2018 Rhoicosphenia curvata	RHCU	1	1893	0.6	221468	0.2 diatom	323684	111444663	83.8 m	NU	PERI
VR92	Rogue River	10/5/2018 R3B	10/29/2018 Achnanthes lanceolata	ACLC	1	1893	0.6	340720	0.3 diatom	323684	111444663	83.8 m	NU	PERI
VR92	Rogue River	10/5/2018 R3B	10/29/2018 Gomphoneis herculeana	GSHR	1	1893	0.6	10221607	9.2 diatom	323684	111444663	83.8 m	NU	PERI
VR92	Rogue River	10/5/2018 R3B	10/29/2018 Gomphonema angustatum	GFAN	1	1893	0.6	340720	0.3 diatom	323684	111444663	83.8 m	NU	PFRI
VP02	Rogue River	10/4/2018 R4	10/20/2018 Nitzschia frustulum	NZED	112	920191	59.2	110771020	25.7 diatom	1429506	210264902	01.2 m	NU	DEDI
VI000	Rogue River	10/4/2018 14	10/30/2018 Nitzschia Hustalum	NZI K	112	107070	58.5	0016201	30. diatom	1438530	310204803	91.2 m	NU	PERI
VR93	Rogue River	10/4/2018 R4	10/30/2018 Acnnantnes minutissima	ACMIN	1/	12/3/6	8.9	8916301	2.9 diatom	1438596	310264803	91.2 m	NU	PERI
VR93	Rogue River	10/4/2018 R4	10/30/2018 Nitzschia palea	NZPL	14	104898	7.3	18881579	6.1 diatom	1438596	310264803	91.2 m	NU	PERI
VR93	Rogue River	10/4/2018 R4	10/30/2018 Cocconeis placentula	COPC	5	37463	2.6	17233187	5.6 diatom	1438596	310264803	91.2 m	NU	PERI
VR93	Rogue River	10/4/2018 R4	10/30/2018 Nitzschia paleacea	NZPC	5	37463	2.6	3671418	1.2 diatom	1438596	310264803	91.2 m	NU	PERI
VR93	Rogue River	10/4/2018 R4	10/30/2018 Nitzschia dissipata	NZDS	5	37463	2.6	10077668	3.2 diatom	1438596	310264803	91.2 m	NU	PERI
VR93	Rogue River	10/4/2018 R4	10/30/2018 Nitzschia microcephala	N7MC	4	29971	2.1	2997076	1.0 diatom	1438596	310264803	91.2 m	NU	PFRI
VR93	Rogue River	10/4/2018 B4	10/30/2018 Nitzschia amphibia	NZAM	3	22478	1.6	2157895	0.7 diatom	1/138596	310264803	91.2 m	NU	PERI
VI000	Rogue River	10/4/2018 14	10/30/2018 Nitzscha amprilola	NZ/AIVI	3	22478	1.0	2157855	0.7 diatom	1438530	310204803	91.2 m	NU	PERI
VK93	Rogue River	10/4/2018 R4	10/30/2018 Navicula minuscula	IN V IVI L	3	22478	1.6	1011513	0.3 diatom	1438596	310264803	91.2 m	NU	PERI
VR93	Rogue River	10/4/2018 R4	10/30/2018 Nitzschia communis	NZCM	3	22478	1.6	1011513	0.3 diatom	1438596	310264803	91.2 m	NU	PERI
VR93	Rogue River	10/4/2018 R4	10/30/2018 Navicula cryptocephala	NVCR	2	14985	1.0	2772295	0.9 diatom	1438596	310264803	91.2 m	NU	PERI
VR93	Rogue River	10/4/2018 R4	10/30/2018 Rhoicosphenia curvata	RHCU	2	14985	1.0	1753289	0.6 diatom	1438596	310264803	91.2 m	NU	PERI
VR93	Rogue River	10/4/2018 R4	10/30/2018 Gomphoneis herculeana	GSHR	2	14985	1.0	80921053	26.1 diatom	1438596	310264803	91.2 m	NU	PERI
VR93	Rogue River	10/4/2018 R4	10/30/2018 Nitzschia volcanica	NZVL	2	14985	1.0	2397661	0.8 diatom	1438596	310264803	91.2 m	NU	PERI
VR93	Rogue River	10/4/2018 B4	10/30/2018 Navicula cryptocenhala veneta	NVCV	2	14985	1.0	1423611	0.5 diatom	1438596	310264803	91.2 m	NU	PERI
V/P02	Rogue River	10/4/2018 R4	10/30/2018 Synodra mazamaonsis	SNIM7	2	1/095	1.0	2926257	1.2 diatom	1/29506	210264902	01.2 m	NU	DEDI
VI000	Rogue River	10/4/2018 14	10/30/2018 Synedia mazamaensis		2	14383	1.0	3830237	1.2 diatom	1438530	310204803	91.2 m	NU	PERI
VK93	Rogue River	10/4/2018 R4	10/30/2018 Nitzschia innominata	INZIIN	1	7493	0.5	359649	0.1 diatom	1438596	310264803	91.2 m	NU	PERI
VR93	Rogue River	10/4/2018 R4	10/30/2018 Fragilaria vaucheria	FRVA	1	7493	0.5	2157895	0.7 diatom	1438596	310264803	91.2 m	NU	PERI
VR93	Rogue River	10/4/2018 R4	10/30/2018 Gomphonema angustatum	GFAN	1	7493	0.5	1348684	0.4 diatom	1438596	310264803	91.2 m	NU	PERI
VR93	Rogue River	10/4/2018 R4	10/30/2018 Navicula menisculus upsaliensis	NVMU	1	7493	0.5	1536001	0.5 diatom	1438596	310264803	91.2 m	NU	PERI
VR93	Rogue River	10/4/2018 R4	10/30/2018 Nitzschia capitellata	NZCP	1	7493	0.5	5394737	1.7 diatom	1438596	310264803	91.2 m	NU	PERI
VR93	Rogue River	10/4/2018 R4	10/30/2018 Synedra ulna	SNUL	1	7493	0.5	14910453	4.8 diatom	1438596	310264803	91.2 m	NU	PERI
VR93	Roque River	10/4/2018 R4	10/30/2018 Navicula tripunctata	NVTP	1	7493	0.5	8391813	2.7 diatom	1438596	310264803	91.2 m	NU	PERI
V/P02	Poguo Pivor	10/4/2019 P4	10/20/2018 Comphonema olivacoum	GEOM	1	7/02	0.5	1695955	0 E diatom	1/29506	210264902	01.2 m	NU	DEDI
VI000	Rogue River	10/4/2018 14	10/30/2018 Gomphonenia onvacedin	OF VIV	1	7493	0.5	10858555	1.5 bluesses	1438530	310204803	91.2 m	NU	PERI
VK93	Rogue River	10/4/2018 R4	10/30/2018 Oscillatoria sp.	USXX	1	7493	0.5	4645468	1.5 bluegreen	1438596	310264803	91.2 m	NU	PERI
VR94	Rogue River	10/4/2018 R4B	11/6/2018 Nitzschia frustulum	NZER	94	939084	45.0	123959064	15.0 diatom	2087963	823906189	98.3 m	NU	PERI
VR94	Rogue River	10/4/2018 R4B	11/6/2018 Nitzschia palea	NZPL	34	339669	16.3	61140351	7.4 diatom	2087963	823906189	98.3 m	NU	PERI
VR94	Rogue River	10/4/2018 R4B	11/6/2018 Achnanthes minutissima	ACMN	11	109893	5.3	6044103	0.7 diatom	2087963	823906189	98.3 m	NU	PERI
VR94	Rogue River	10/4/2018 R4B	11/6/2018 Nitzschia dissipata	NZDS	9	89912	4.3	24186404	2.9 diatom	2087963	823906189	98.3 m	NU	PERI
VR94	Rogue River	10/4/2018 R4B	11/6/2018 Navicula cryptocephala veneta	NVCV	7	69932	3.3	6643519	0.8 diatom	2087963	823906189	98.3 m	NU	PERI
VR94	Rogue River	10/4/2018 R4B	11/6/2018 Cocconeis placentula	COPC	6	59942	2.9	27573099	3.3 diatom	2087963	823906189	98.3 m	NU	PFRI
VPQA	Poguo Pivor	10/4/2019 P/P	11/6/2018 Comphonema subclavatum	GESP	6	50042	2.0	25064012	4.4 diatom	2097062	972006190	09.2 m	NU	DEDI
VI004	Rogue River	10/4/2018 148	11/0/2018 Gomphonenia Subclavatum	OI 3D	0	50042	2.5	11000101	4.4 diatom	2087903	823900189	58.3 m	NU	PERI
VK94	Rogue River	10/4/2018 R4B	11/6/2018 Navicula cryptocephala	NVCR	6	59942	2.9	11089181	1.3 diatom	208/963	823906189	98.3 m	NU	PERI
VR94	Rogue River	10/4/2018 R4B	11/6/2018 Oscillatoria sp.	OSXX	5	49951	2.4	/432/485	9.0 bluegreen	208/963	823906189	98.3 m	NU	PERI
VR94	Rogue River	10/4/2018 R4B	11/6/2018 Gomphoneis herculeana	GSHR	5	49951	2.4	269736842	32.7 diatom	2087963	823906189	98.3 m	NU	PERI
VR94	Rogue River	10/4/2018 R4B	11/6/2018 Nitzschia amphibia	NZAM	4	39961	1.9	3836257	0.5 diatom	2087963	823906189	98.3 m	NU	PERI
VR94	Rogue River	10/4/2018 R4B	11/6/2018 Nitzschia communis	NZCM	3	29971	1.4	2697368	0.3 diatom	2087963	823906189	98.3 m	NU	PERI
VR94	Rogue River	10/4/2018 R4B	11/6/2018 Rhoicosphenia curvata	RHCU	3	29971	1.4	3506579	0.4 diatom	2087963	823906189	98.3 m	NU	PERI
VR94	Rogue River	10/4/2018 R4R	11/6/2018 Synedra ulna	SNU	3	29971	1.4	101391082	12.3 diatom	2087963	823906189	98 3 m	NU	PERI
VP04	Poguo Pivor	10/4/2019 040	11/6/2018 Navicula tripupctata			10091	1.4	22270160	2.7 distom	2007 503	972006190	09.2 m	NU	DEDI
VI1.34	Nogue Niver	10/4/2010 R4D		NZNAC	ź	13201	1.0	223/0108	2.7 uidt011	2007903	023300103	20.2 111	140	r LNI
VK94	Rogue River	10/4/2018 R4B	11/6/2018 Nitzschia microcephala	NZMC	1	9990	0.5	999025	0.1 diatom	2087963	823906189	98.3 m	NU	PERI
VR94	Rogue River	10/4/2018 R4B	11/6/2018 Cocconeis klamathensis	COKL	1	9990	0.5	2797271	0.3 diatom	2087963	823906189	98.3 m	NU	PERI
VR94	Rogue River	10/4/2018 R4B	11/6/2018 Fragilaria construens	FRCN	1	9990	0.5	8951267	1.1 diatom	2087963	823906189	98.3 m	NU	PERI
VR94	Rogue River	10/4/2018 R4B	11/6/2018 Nitzschia paleacea	NZPC	1	9990	0.5	979045	0.1 diatom	2087963	823906189	98.3 m	NU	PERI
VR94	Rogue River	10/4/2018 R4B	11/6/2018 Achnanthes lanceolata	ACLC	1	9990	0.5	1798246	0.2 diatom	2087963	823906189	98.3 m	NU	PERI
VR94	Rogue River	10/4/2018 R4B	11/6/2018 Cymbella minuta	CMMN	1	9990	0.5	3696394	0.4 diatom	2087963	823906189	98.3 m	NU	PERI
VRQA	Rogue River	10/4/2018 R/R	11/6/2018 Fragilaria vaucharia	ER\/A	1	9999	0 5	2877102	0.3 diatom	2027062	873906189	98.3 m	NU	PERI
1134		10/4/2010 1140	11/0/2010 1106/01/0 4000/01/01	11100	1	5550	0.5	2011193	0.5 000011	2007503	525500105	50.5 11	110	1 6101

				Species	Count							De	oth Cou	unt
Slide	Lake/River	Sample Date Site	Date Analyzed Species Name	Code	per taxa	Density	% Density	Biovolume	% Biovolume Group	Total Density T	otal Biovolume	TSI UI	nits Un	its Type
V/D04	Regue River	10/4/2018 P4P	11/6/2018 Sunodra mazamagnesis	CNIN47	1	0000	0.5	2557505	0.2 distan	2097062	932006190	09.2 m	NU	DEDI
VR94	Rogue River	10/4/2018 R4B	11/6/2018 Syneura mazamaensis	SINIVIZ	1	9990	0.5	2557505	0.3 diatom	2007905	823900189	96.5 111	NU	PERI
VR94	Rogue River	10/4/2018 R4B	11/6/2018 Cymbelia sinuata	CIVISIN	1	9990	0.5	1398635	0.2 diatom	2087963	823906189	98.3 m	NU	PERI
VR94	Rogue River	10/4/2018 R4B	11/6/2018 Cyclotella menegniniana	CCIVIG	1	9990	0.5	3796296	0.5 diatom	2087963	823906189	98.3 m	NU	PERI
VR94	Rogue River	10/4/2018 R4B	11/6/2018 Diatoma vulgare	DIVL	1	9990	0.5	19580897	2.4 diatom	208/963	823906189	98.3 m	NU	PERI
VR95	Rogue River	10/5/2018 R5	11/6/2018 Nitzschia frustulum	NZFR	29	208596	23.2	27534737	7.0 diatom	899123	395593175	93.0 m	NU	PERI
VR95	Rogue River	10/5/2018 R5	11/6/2018 Cocconeis placentula	COPC	17	122281	13.6	56249123	14.2 diatom	899123	395593175	93.0 m	NU	PERI
VR95	Rogue River	10/5/2018 R5	11/6/2018 Navicula cryptocephala veneta	NVCV	13	93509	10.4	8883333	2.2 diatom	899123	395593175	93.0 m	NU	PERI
VR95	Rogue River	10/5/2018 R5	11/6/2018 Rhoicosphenia curvata	RHCU	13	93509	10.4	12034579	3.0 diatom	899123	395593175	93.0 m	NU	PERI
VR95	Rogue River	10/5/2018 R5	11/6/2018 Cymbella minuta	CMMN	6	43158	4.8	19162105	4.8 diatom	899123	395593175	93.0 m	NU	PERI
VR95	Rogue River	10/5/2018 R5	11/6/2018 Gomphonema angustatum	GFAN	5	35965	4.0	7768421	2.0 diatom	899123	395593175	93.0 m	NU	PERI
VR95	Rogue River	10/5/2018 R5	11/6/2018 Nitzschia amphibia	NZAM	5	35965	4.0	3452632	0.9 diatom	899123	395593175	93.0 m	NU	PERI
VR95	Rogue River	10/5/2018 B5	11/6/2018 Nitzschia dissinata	NZDS	3	21579	2.4	5804737	1.5 diatom	899123	395593175	93.0 m	NU	PERI
VPOS	Poguo Pivor	10/5/2010 R5	11/6/2018 Comphonoma subclavatum	GESP	2	21570	2.1	12047269	2.2 diatom	900122	205502175	02.0 m	NU	DEDI
VROF	Rogue River	10/5/2018 10	11/6/2018 Gomphonenia subclavatum	NZDC	3	21575	2.4	2114727	0.5 diatom	800123	395593175	93.0 m	NU	DEDI
VR95	Rogue River	10/5/2018 K5	11/6/2018 Nitzschia paleacea	NZPC	5	21579	2.4	2114/5/	1.0 diatom	099125	393393173	95.0 11	NU	PERI
VR95	Rogue River	10/5/2018 R5	11/6/2018 Navicula cryptocephala	NVCR	3	21579	2.4	3992105	1.0 diatom	899123	395593175	93.0 m	NU	PERI
VR95	Rogue River	10/5/2018 R5	11/6/2018 Melosira varians	MLVR	3	21579	2.4	23844737	6.0 diatom	899123	395593175	93.0 m	NU	PERI
VR95	Rogue River	10/5/2018 R5	11/6/2018 Nitzschia communis	NZCM	2	14386	1.6	647368	0.2 diatom	899123	395593175	93.0 m	NU	PERI
VR95	Rogue River	10/5/2018 R5	11/6/2018 Epithemia turgida	EPTR	2	14386	1.6	61140351	15.5 diatom	899123	395593175	93.0 m	NU	PERI
VR95	Rogue River	10/5/2018 R5	11/6/2018 Gomphoneis herculeana	GSHR	2	14386	1.6	77684211	19.6 diatom	899123	395593175	93.0 m	NU	PERI
VR95	Rogue River	10/5/2018 R5	11/6/2018 Fragilaria construens	FRCN	2	14386	1.6	6444912	1.6 diatom	899123	395593175	93.0 m	NU	PERI
VR95	Rogue River	10/5/2018 R5	11/6/2018 Cymbella affinis	CMAF	2	14386	1.6	25894737	6.5 diatom	899123	395593175	93.0 m	NU	PERI
VR95	Rogue River	10/5/2018 R5	11/6/2018 Achnanthes minutissima	ACMN	2	14386	1.6	719298	0.2 diatom	899123	395593175	93.0 m	NU	PERI
VR95	Rogue River	10/5/2018 R5	11/6/2018 Fragilaria construens venter	FRCV	1	7193	0.8	345263	0.1 diatom	899123	395593175	93.0 m	NU	PERI
VR95	Rogue River	10/5/2018 R5	11/6/2018 Nitzschia capitellata	NZCP	1	7193	0.8	2589474	0.7 diatom	899123	395593175	93.0 m	NU	PFRI
VR95	Rogue River	10/5/2018 R5	11/6/2018 Navicula tripunctata	NVTP	1	7193	0.8	8056140	2.0 diatom	899123	395593175	93.0 m	NU	PERI
VR95	Rogue River	10/5/2018 R5	11/6/2018 Amphora perpusilla	AFPR	1	7193	0.8	1194035	0.3 diatom	899123	395593175	93.0 m	NU	PERI
VROF	Rogue River	10/5/2018 10	11/6/2018 Amphora perpusita		1	7103	0.8	1079047	0.3 diatom	800123	395593175	93.0 m	NU	DEDI
VR95	Rogue River	10/5/2018 K5	11/6/2018 Navicula sp.	CNACNI	1	7195	0.8	1076947	0.3 diatom	099125	393393173	95.0 11	NU	PERI
VR95	Rogue River	10/5/2018 R5	11/6/2018 Cymbelia sinuata	CMSN	1	/193	0.8	1007018	0.3 diatom	899123	395593175	93.0 m	NU	PERI
VR95	Rogue River	10/5/2018 R5	11/6/2018 Cyclotella meneghiniana	CCMG	1	/193	0.8	2/33333	0.7 diatom	899123	395593175	93.0 m	NU	PERI
VR95	Rogue River	10/5/2018 R5	11/6/2018 Synedra ulna	SNUL	1	7193	0.8	14314035	3.6 diatom	899123	395593175	93.0 m	NU	PERI
VR95	Rogue River	10/5/2018 R5	11/6/2018 Synedra mazamaensis	SNMZ	1	7193	0.8	1841404	0.5 diatom	899123	395593175	93.0 m	NU	PERI
VR95	Rogue River	10/5/2018 R5	11/6/2018 Gomphonema ventricosum	GFVT	1	7193	0.8	6114035	1.5 diatom	899123	395593175	93.0 m	NU	PERI
VR96	Rogue River	10/5/2018 R5B	11/6/2018 Nitzschia frustulum	NZFR	24	113573	20.3	16354571	8.1 diatom	558403	201954340	88.1 m	NU	PERI
VR96	Rogue River	10/5/2018 R5B	11/6/2018 Rhoicosphenia curvata	RHCU	16	75716	13.6	11516343	5.7 diatom	558403	201954340	88.1 m	NU	PERI
VR96	Rogue River	10/5/2018 R5B	11/6/2018 Cocconeis placentula	COPC	14	66251	11.9	30475531	15.1 diatom	558403	201954340	88.1 m	NU	PERI
VR96	Rogue River	10/5/2018 R5B	11/6/2018 Navicula cryptocephala	NVCR	13	61519	11.0	11381002	5.6 diatom	558403	201954340	88.1 m	NU	PERI
VR96	Rogue River	10/5/2018 R5B	11/6/2018 Navicula cryptocephala veneta	NVCV	11	52054	9.3	4945175	2.4 diatom	558403	201954340	88.1 m	NU	PFRI
VR96	Rogue River	10/5/2018 R5B	11/6/2018 Cymbella minuta	CMMN	8	37858	6.8	15/08126	7.6 diatom	558403	20195/13/0	88.1 m	NU	PERI
VPOG	Rogue River	10/5/2010 R5D	11/6/2018 Nitzschia dissipata		6	20202	5.1	0165274	4.5 diatom	559402	201054240	99.1 m	NU	DEDI
VROC	Rogue River	10/5/2018 K5B	11/6/2010 Witzschia utssipata	FDV/A	0	19020	2.4	5105374	4.5 diatom	558403	201954340	88.1 m	NU	DEDI
VR96	Rogue River	10/5/2018 R5B	11/6/2018 Fragilaria vaucheria	FRVA	4	18929	3.4	5451524	2.7 diatom	558403	201954340	88.1 m	NU	PERI
VR96	Rogue River	10/5/2018 R5B	11/6/2018 Melosira varians	IVILVR	4	18929	3.4	12303786	6.1 diatom	558403	201954340	88.1 m	NU	PERI
VR96	Rogue River	10/5/2018 R5B	11/6/2018 Gomphonema subclavatum	GESB	3	14197	2.5	8518006	4.2 diatom	558403	201954340	88.1 m	NU	PERI
VR96	Rogue River	10/5/2018 R5B	11/6/2018 Nitzschia communis	NZCM	3	14197	2.5	638850	0.3 diatom	558403	201954340	88.1 m	NU	PERI
VR96	Rogue River	10/5/2018 R5B	11/6/2018 Gomphoneis herculeana	GSHR	2	9464	1.7	51108033	25.3 diatom	558403	201954340	88.1 m	NU	PERI
VR96	Rogue River	10/5/2018 R5B	11/6/2018 Nitzschia volcanica	NZVL	2	9464	1.7	1514312	0.7 diatom	558403	201954340	88.1 m	NU	PERI
VR96	Rogue River	10/5/2018 R5B	11/6/2018 Nitzschia palea	NZPL	2	9464	1.7	1703601	0.8 diatom	558403	201954340	88.1 m	NU	PERI
VR96	Rogue River	10/5/2018 R5B	11/6/2018 Nitzschia paleacea	NZPC	2	9464	1.7	927516	0.5 diatom	558403	201954340	88.1 m	NU	PERI
VR96	Rogue River	10/5/2018 R5B	11/6/2018 Gomphonema olivaceum	GFOM	1	4732	0.8	1064751	0.5 diatom	558403	201954340	88.1 m	NU	PERI
VR96	Rogue River	10/5/2018 R5B	11/6/2018 Diatoma vulgare	DTVL	1	4732	0.8	18550323	9.2 diatom	558403	201954340	88.1 m	NU	PERI
VR96	Rogue River	10/5/2018 R5B	11/6/2018 Nitzschia microcephala	NZMC	1	4732	0.8	473223	0.2 diatom	558403	201954340	88.1 m	NU	PERI
VR96	Roque River	10/5/2018 B5B	11/6/2018 Nitzschia amphihia	NZAM	1	4732	0.8	454294	0.2 diatom	558403	201954340	88.1 m	NU	PERI
VR97	Rogue River	10/4/2018 R6	11/6/2018 Nitzschia frustulum	NZER	63	566447	40.6	81568421	14.2 diatom	1393640	57/181623	95.7 m	NU	PERI
VR07	Rogue River	10/4/2018 10	11/6/2018 Witzschild Hustalah	FRON	10	200447	40.0	120942105	21.0 diatom	1303640	574181023	95.7 m	NU	DEDI
VR97	Rogue River	10/4/2018 RB		FRCIN	10	09912	0.5	120642105	21.0 diatom	1595040	574161025	95.7 11	NU	PERI
VR97	Rogue River	10/4/2018 R6	11/6/2018 Cocconeis placentula	COPC	9	80921	5.8	37223684	6.5 diatom	1393640	574181623	95.7 m	NU	PERI
VR97	Rogue River	10/4/2018 R6	11/6/2018 Nitzschia palea	NZPL	8	/1930	5.2	1294/368	2.3 diatom	1393640	574181623	95.7 m	NU	PERI
VR97	Rogue River	10/4/2018 R6	11/6/2018 Navicula cryptocephala veneta	NVCV	6	53947	3.9	5125000	0.9 diatom	1393640	574181623	95.7 m	NU	PERI
VR97	Rogue River	10/4/2018 R6	11/6/2018 Nitzschia amphibia	NZAM	6	53947	3.9	5178947	0.9 diatom	1393640	574181623	95.7 m	NU	PERI
VR97	Rogue River	10/4/2018 R6	11/6/2018 Nitzschia dissipata	NZDS	5	44956	3.2	12093202	2.1 diatom	1393640	574181623	95.7 m	NU	PERI
VR97	Rogue River	10/4/2018 R6	11/6/2018 Rhoicosphenia curvata	RHCU	5	44956	3.2	5259868	0.9 diatom	1393640	574181623	95.7 m	NU	PERI
VR97	Rogue River	10/4/2018 R6	11/6/2018 Navicula cryptocephala	NVCR	5	44956	3.2	8316886	1.4 diatom	1393640	574181623	95.7 m	NU	PERI
VR97	Rogue River	10/4/2018 R6	11/6/2018 Achnanthes minutissima	ACMN	5	44956	3.2	2247807	0.4 diatom	1393640	574181623	95.7 m	NU	PERI
VR97	Rogue River	10/4/2018 R6	11/6/2018 Cymbella minuta	CMMN	4	35965	2.6	15968421	2.8 diatom	1393640	574181623	95.7 m	NU	PERI
VR97	Rogue River	10/4/2018 R6	11/6/2018 Nitzschia communis	NZCM	۰.	35965	2.6	1618421	0.3 diatom	1393640	574181623	95.7 m	NU	PERI
VR97	Roque River	10/4/2018 86	11/6/2018 Gomphonema subclavatum	GESB	-	35965	2.0	21578947	3.8 diatom	1393640	57/181622	95.7 m	NU	PERI
V/D07	Rogue River	10/4/2010 10	11/6/2019 Nitzschia palaasaa	NZDC	4	26024	2.0	213/054/		1202640	574101023	05.7	NU	DEDI
VR9/	Nogue River	10/4/2018 KD	11/0/2010 Mitzschla paleacea		3	209/4	1.9	2043421	0.5 ulatom	1393040	574101023	95.7 m	NU	PERI
VK9/	Rogue River	10/4/2018 Kb	11/b/2018 Fragilaria Vaucheria	FKVA	3	209/4	1.9	110098947	1.8 diatom	1393640	574181623	95.7 m	NU	PERI
VK9/	Rogue River	10/4/2018 Kb	11/b/2018 ivielosira varians	IVILVK	2	1/982	1.3	11088236	2.0 diatom	1393640	574181623	95.7 m	NU	PERI
VR97	Kogue River	10/4/2018 R6	11/6/2018 Gomphonema angustatum	GFAN	2	1/982	1.3	3236842	0.6 diatom	1393640	5/4181623	95.7 m	NU	PERI
				Species	Count							De	oth Cou	unt
-------	-------------	--------------------------------	---	--------------	----------	---------	-----------	-----------	-------------------	------------------	----------------	--------------------	---------	----------
Slide	Lake/River	Sample Date Site	Date Analyzed Species Name	Code	per taxa	Density	% Density	Biovolume	% Biovolume Group	Total Density To	otal Biovolume	TSI U	nits Un	its Type
VR97	Rogue River	10/4/2018 R6	11/6/2018 Achnanthes lanceolata	ACLC	1	8991	0.6	1618421	0.3 diatom	1393640	574181623	95.7 m	NU	PERI
VR97	Rogue River	10/4/2018 R6	11/6/2018 Epithemia turgida	EPTR	1	8991	0.6	38212719	6.7 diatom	1393640	574181623	95.7 m	NU	PERI
VR97	Rogue River	10/4/2018 R6	11/6/2018 Cymbella mexicana	CMMX	1	8991	0.6	49451754	8.6 diatom	1393640	574181623	95.7 m	NU	PERI
VR97	Rogue River	10/4/2018 R6	11/6/2018 Oscillatoria sp.	OSXX	1	8991	0.6	5574561	1.0 bluegreen	1393640	574181623	95.7 m	NU	PERI
VR97	Rogue River	10/4/2018 R6	11/6/2018 Gomphoneis herculeana	GSHR	1	8991	0.6	97105263	16.9 diatom	1393640	574181623	95.7 m	NU	PERI
VR97	Rogue River	10/4/2018 R6	11/6/2018 Navicula minima	NVMN	1	8991	0.6	395614	0.1 diatom	1393640	574181623	95.7 m	NU	PERI
VR97	Rogue River	10/4/2018 R6	11/6/2018 Nitzschia volcanica	NZVL	1	8991	0.6	1438596	0.3 diatom	1393640	574181623	95.7 m	NU	PERI
VR97	Rogue River	10/4/2018 R6	11/6/2018 Synedra mazamaensis	SNMZ	1	8991	0.6	4603509	0.8 diatom	1393640	574181623	95.7 m	NU	PERI
VR97	Rogue River	10/4/2018 R6	11/6/2018 Nitzschia innominata	NZIN	1	8991	0.6	431579	0.1 diatom	1393640	574181623	95.7 m	NU	PERI
VR97	Rogue River	10/4/2018 R6	11/6/2018 Navicula tripunctata	NVTP	1	8991	0.6	10070175	1.8 diatom	1393640	574181623	95.7 m	NU	PERI
VR97	Rogue River	10/4/2018 R6	11/6/2018 Gomphonema ventricosum	GFVT	1	8991	0.6	7642544	1.3 diatom	1393640	574181623	95.7 m	NU	PERI
VR98	Rogue River	10/4/2018 R6B	11/7/2018 Nitzschia frustulum	NZFR	50	195461	35.0	32837529	12.9 diatom	559020	254809058	89.8 m	NU	PERI
VR98	Rogue River	10/4/2018 R6B	11/7/2018 Navicula cryptocephala	NVCR	13	50820	9.1	9401697	3.7 diatom	559020	254809058	89.8 m	NU	PERI
VR98	Rogue River	10/4/2018 R6B	11/7/2018 Melosira varians	MLVR	12	46911	8.4	131115561	51.5 diatom	559020	254809058	89.8 m	NU	PERI
VR98	Rogue River	10/4/2018 R6B	11/7/2018 Navicula cryptocephala veneta	NVCV	10	39092	7.0	3713768	1.5 diatom	559020	254809058	89.8 m	NU	PERI
VR98	Rogue River	10/4/2018 R6B	11/7/2018 Cymbella minuta	CMMN	8	31274	5.6	11571320	4.5 diatom	559020	254809058	89.8 m	NU	PERI
VR98	Rogue River	10/4/2018 R6B	11/7/2018 Nitzschia dissipata	NZDS	8	31274	5.6	8412662	3.3 diatom	559020	254809058	89.8 m	NU	PERI
VR98	Rogue River	10/4/2018 R6B	11///2018 Rhoicosphenia curvata	RHCU	8	31274	5.6	3659039	1.4 diatom	559020	254809058	89.8 m	NU	PERI
VR98	Rogue River	10/4/2018 R6B	11///2018 Achnanthes minutissima	ACMN	6	23455	4.2	1407323	0.6 diatom	559020	254809058	89.8 m	NU	PERI
VR98	Rogue River	10/4/2018 R6B	11///2018 Cocconeis placentula	COPC	4	15637	2.8	/192982	2.8 diatom	559020	254809058	89.8 m	NU	PERI
VR98	Rogue River	10/4/2018 R6B	11/7/2018 Nitzschia amphibia	NZAIVI	3	11/28	2.1	1463616	0.6 diatom	559020	254809058	89.8 m	NU	PERI
VR98	Rogue River	10/4/2018 R6B	11/7/2018 Navicula viridula	NVVR	3	11/28	2.1	5277460	2.1 diatom	559020	254809058	89.8 m	NU	PERI
VR98	Rogue River	10/4/2018 R6B	11/7/2018 Fragilaria construens venter	FREV	2	7818	1.4	1125858	0.4 diatom	559020	254809058	89.8 m	NU	PERI
VR98	Rogue River	10/4/2018 R6B	11/7/2018 Fragilaria construens	FRCN NZDI	2	7818	1.4	14010679	5.5 diatom	559020	254809058	89.8 m	NU	DEDI
1/202	Rogue River	10/4/2018 R0B	11/7/2018 Nitzschia communis	NZCM	2	7010	1.4	251921	0.1 diatom	559020	254805058	89.8 m	NU	DEDI
VR98	Rogue River	10/4/2018 R6B	11/7/2018 Kitzschia communis	FRV/A	2	7818	1.4	2251716	0.9 diatom	559020	254809058	89.8 m	NU	PERI
VR98	Rogue River	10/4/2018 R6B	11/7/2018 Gomphonema subclavatum	GESB	2	2000	0.7	22/17/10	0.9 diatom	559020	254809058	89.8 m	NU	PERI
VR98	Rogue River	10/4/2018 R6B	11/7/2018 Nitzschia innominata	NZIN	1	3909	0.7	187643	0.1 diatom	559020	254809058	89.8 m	NU	PERI
VR98	Rogue River	10/4/2018 R6B	11/7/2018 Calothrix sn	KXXX	1	3909	0.7	12509535	4.9 bluegreen	559020	254809058	89.8 m	NU	PERI
VR98	Rogue River	10/4/2018 R6B	11/7/2018 Navicula menisculus upsaliensis	NVMU	1	3909	0.7	801392	0.3 diatom	559020	254809058	89.8 m	NU	PERI
VR98	Rogue River	10/4/2018 R6B	11/7/2018 Amphora perpusilla	AFPR	1	3909	0.7	648932	0.3 diatom	559020	254809058	89.8 m	NU	PERI
VR98	Rogue River	10/4/2018 R6B	11/7/2018 Synedra mazamaensis	SNMZ	1	3909	0.7	2001526	0.8 diatom	559020	254809058	89.8 m	NU	PERI
VR98	Rogue River	10/4/2018 R6B	11/7/2018 Navicula cascadensis	NVCS	1	3909	0.7	234554	0.1 diatom	559020	254809058	89.8 m	NU	PERI
VR98	Rogue River	10/4/2018 R6B	11/7/2018 Gomphonema olivaceum	GFOM	1	3909	0.7	879577	0.3 diatom	559020	254809058	89.8 m	NU	PERI
VR99	Rogue River	10/5/2018 R7	11/7/2018 Cocconeis placentula	COPC	23	20543	20.9	9449721	38.0 diatom	98249	24877954	73.0 m	NU	PERI
VR99	Rogue River	10/5/2018 R7	11/7/2018 Nitzschia frustulum	NZFR	22	19650	20.0	2357964	9.5 diatom	98249	24877954	73.0 m	NU	PERI
VR99	Rogue River	10/5/2018 R7	11/7/2018 Nitzschia dissipata	NZDS	9	8039	8.2	2162361	8.7 diatom	98249	24877954	73.0 m	NU	PERI
VR99	Rogue River	10/5/2018 R7	11/7/2018 Achnanthes minutissima	ACMN	7	6252	6.4	312609	1.3 diatom	98249	24877954	73.0 m	NU	PERI
VR99	Rogue River	10/5/2018 R7	11/7/2018 Navicula cryptocephala veneta	NVCV	7	6252	6.4	593957	2.4 diatom	98249	24877954	73.0 m	NU	PERI
VR99	Rogue River	10/5/2018 R7	11/7/2018 Navicula cryptocephala	NVCR	6	5359	5.5	991417	4.0 diatom	98249	24877954	73.0 m	NU	PERI
VR99	Rogue River	10/5/2018 R7	11/7/2018 Rhoicosphenia curvata	RHCU	4	3573	3.6	501603	2.0 diatom	98249	24877954	73.0 m	NU	PERI
VR99	Rogue River	10/5/2018 R7	11/7/2018 Nitzschia amphibia	NZAM	3	2680	2.7	257232	1.0 diatom	98249	24877954	73.0 m	NU	PERI
VR99	Rogue River	10/5/2018 R7	11/7/2018 Nitzschia paleacea	NZPC	3	2680	2.7	262591	1.1 diatom	98249	24877954	73.0 m	NU	PERI
VR99	Rogue River	10/5/2018 R7	11/7/2018 Cymbella minuta	CMMN	3	2680	2.7	991417	4.0 diatom	98249	24877954	73.0 m	NU	PERI
VR99	Rogue River	10/5/2018 R7	11/7/2018 Gomphonema subclavatum	GFSB	3	2680	2.7	1607703	6.5 diatom	98249	24877954	73.0 m	NU	PERI
VR99	Rogue River	10/5/2018 R7	11/7/2018 Navicula minuscula	NVML	2	1786	1.8	80385	0.3 diatom	98249	24877954	73.0 m	NU	PERI
VR99	Rogue River	10/5/2018 R7	11/7/2018 Nitzschia communis	NZCM	2	1786	1.8	80385	0.3 diatom	98249	24877954	73.0 m	NU	PERI
VR99	Rogue River	10/5/2018 R7	11/7/2018 Gomphonema angustatum	GFAN	2	1786	1.8	321541	1.3 diatom	98249	24877954	73.0 m	NU	PERI
VR99	Rogue River	10/5/2018 R7	11/7/2018 Synedra mazamaensis	SNMZ	2	1786	1.8	457302	1.8 diatom	98249	24877954	73.0 m	NU	PERI
VR99	Rogue River	10/5/2018 R7	11/7/2018 Cymbella sinuata	CMSN	2	1786	1.8	250087	1.0 diatom	98249	24877954	73.0 m	NU	PERI
VR99	Rogue River	10/5/2018 R7	11/7/2018 Nitzschia palea	NZPL	2	1786	1.8	321541	1.3 diatom	98249	24877954	73.0 m	NU	PERI
VR99	Rogue River	10/5/2018 R7	11/7/2018 Fragilaria construens	FRCN	2	1786	1.8	400139	1.6 diatom	98249	24877954	73.0 m	NU	PERI
VR99	Rogue River	10/5/2018 R7	11/7/2018 Nitzschia innominata	NZIN	1	893	0.9	42872	0.2 diatom	98249	24877954	73.0 m	NU	PERI
VR99	Rogue River	10/5/2018 R/	11//2018 Melosira varians	MLVR	1	893	0.9	580559	2.3 diatom	98249	24877954	/3.0 m	NU	PERI
VR99	Rogue River	10/5/2018 R/	11//2018 Oscillatoria sp.	OSXX	1	893	0.9	553764	2.2 bluegreen	98249	24877954	/3.0 m	NU	PERI
VR99	Rogue River	10/5/2018 R/	11///2018 Diatoma vulgare	DIVL	1	893	0.9	1/50610	7.0 diatom	98249	24877954	73.0 m	NU	PERI
VR99	Rogue River	10/5/2018 R/	11/7/2018 Navicula viridula	NVVR	1	893	0.9	401926	1.6 diatom	98249	24877954	73.0 m	NU	PERI
VR99	Rogue River	10/5/2018 R/	11/7/2018 Ampnora perpusilia	AFPR	1	893	0.9	148266	0.6 diatom	98249	24877954	73.0 m	NU	PERI
VROO	Rogue River	10/5/2018 K/B	11/7/2018 NITZSCHIA TRUSTUIUM	NZEK	46	22000	32.9	316/9/3	13.2 diatom	66956	23901240	72.8 m	NU	PERI
VRUU	Rogue River	10/5/2018 K/B	11/7/2018 INITZSCHIA GISSIPATA	INZUS	18	8609	12.9	2315/19	9.7 diatom	66956	23901240	72.8 M	NU	PERI
VRUU	Rogue River	10/5/2018 K/B	11///2018 Cocconeis placentula	LOPC	18	8609	12.9	3959966	16.5 diatom	66956	23961240	72.8 m	NU	PERI
VRUU	Rogue River	10/5/2018 K/B	11/7/2018 Navicula cryptocephala veneta	NVCV	10	4/83	/.1	454344	1.9 diatom	66956	23901240	72.8 M	NU	PERI
VROO	Rogue River	10/5/2018 K/B	11/7/2018 Knoicosphenia curvata	NIVCR	5	2391	3.6	2/9/80	1.2 diatom	66056	23901240	72.8 m	NU	PERI
VROO	Rogue River	10/5/2018 K/B	11/7/2018 Navicula cryptocephala	NVCK	5	2391	3.6	442388	1.8 distor	66956	23901240	72.8 m	NU	PERI
VROO	Rogue River	10/5/2018 K/B 10/5/2019 P7P	11/7/2018 Gomphonema subciavatum 11/7/2018 Eragilaria construons	GE2B	4	1012	2.9	2/201/5	4.8 diatom	66056	23901240	72.8 m	NU	PERI
VROO	Rogue River	10/5/2010 R/D	11/7/2010 Flagildid Construens		4	1435	2.9	2420145	0.4 distor	66056	23901240	72.0 III 72.9 m	NU	DEDI
VI100	nugue River	10/3/2010 N/D	11/7/2010 MILESUIId IIIIUIIIIIdid	INCIIN	5	1433	2.1	02220	0.4 uidt0111	00900	23301240	12.0 111	110	L PUL

				Species	Count							De	pth Cou	int
Slide	Lake/River	Sample Date Site	Date Analyzed Species Name	Code	per taxa	Density	% Density	Biovolume	% Biovolume Group	Total Density	Total Biovolume	TSI U	nits Un	its Type
VR00	Rogue River	10/5/2018 R7B	11/7/2018 Achnanthes minutissima	ACMN	3	1435	2.1	71739	0.3 diatom	66956	23961240	72.8 m	NU	PERI
VR00	Rogue River	10/5/2018 R7B	11/7/2018 Nitzschia amphibia	NZAM	2	957	1.4	91825	0.4 diatom	66956	23961240	72.8 m	NU	PERI
VR00	Rogue River	10/5/2018 R7B	11/7/2018 Fragilaria vaucheria	FRVA	2	957	1.4	275476	1.1 diatom	66956	23961240	72.8 m	NU	PERI
VR00	Rogue River	10/5/2018 R7B	11/7/2018 Gomphonema angustatum	GFAN	2	957	1.4	172172	0.7 diatom	66956	23961240	72.8 m	NU	PERI
VR00	Rogue River	10/5/2018 R7B	11/7/2018 Nitzschia communis	NZCM	2	957	1.4	43043	0.2 diatom	66956	23961240	72.8 m	NU	PERI
VR00	Rogue River	10/5/2018 R7B	11/7/2018 Epithemia turgida	EPTR	1	478	0.7	2032591	8.5 diatom	66956	23961240	72.8 m	NU	PERI
VR00	Rogue River	10/5/2018 R7B	11/7/2018 Ankistrodesmus falcatus	AKFL	1	478	0.7	11956	0.0 green	66956	23961240	72.8 m	NU	PERI
VR00	Rogue River	10/5/2018 R7B	11/7/2018 Diatoma vulgare	DTVL	1	478	0.7	937383	3.9 diatom	66956	23961240	72.8 m	NU	PERI
VR00	Rogue River	10/5/2018 R7B	11/7/2018 Cymbella affinis	CMAF	1	478	0.7	860862	3.6 diatom	66956	23961240	72.8 m	NU	PERI
VR00	Rogue River	10/5/2018 R7B	11/7/2018 Navicula cascadensis	NVCS	1	478	0.7	28695	0.1 diatom	66956	23961240	72.8 m	NU	PERI
VR00	Rogue River	10/5/2018 R7B	11/7/2018 Navicula minuscula	NVML	1	478	0.7	21522	0.1 diatom	66956	23961240	72.8 m	NU	PERI
VR00	Rogue River	10/5/2018 R7B	11/7/2018 Fragilaria construens venter	FRCV	1	478	0.7	22956	0.1 diatom	66956	23961240	72.8 m	NU	PERI
VR00	Rogue River	10/5/2018 R7B	11/7/2018 Cymbella sinuata	CMSN	1	478	0.7	66956	0.3 diatom	66956	23961240	72.8 m	NU	PERI
VR00	Rogue River	10/5/2018 R7B	11/7/2018 Nitzschia microcephala	NZMC	1	478	0.7	47826	0.2 diatom	66956	23961240	72.8 m	NU	PERI
VR00	Rogue River	10/5/2018 R7B	11/7/2018 Achnanthes lanceolata	ACLC	1	478	0.7	86086	0.4 diatom	66956	23961240	72.8 m	NU	PERI
VR00	Rogue River	10/5/2018 R7B	11/7/2018 Cymbella minuta	CMMN	1	478	0.7	176955	0.7 diatom	66956	23961240	72.8 m	NU	PERI
VR00	Rogue River	10/5/2018 R7B	11/7/2018 Nitzschia paleacea	NZPC	1	478	0.7	46869	0.2 diatom	66956	23961240	72.8 m	NU	PERI
VR00	Rogue River	10/5/2018 R7B	11/7/2018 Synedra ulna	SNUL	1	478	0.7	951731	4.0 diatom	66956	23961240	72.8 m	NU	PERI
VR00	Rogue River	10/5/2018 R7B	11/7/2018 Gomphoneis herculeana	GSHR	1	478	0.7	2582587	10.8 diatom	66956	23961240	72.8 m	NU	PERI
VR00	Rogue River	10/5/2018 R7B	11/7/2018 Amphora perpusilla	AFPR	1	478	0.7	79391	0.3 diatom	66956	23961240	72.8 m	NU	PERI
VR00	Rogue River	10/5/2018 R7B	11/7/2018 Synedra rumpens	SNRM	1	478	0.7	66956	0.3 diatom	66956	23961240	72.8 m	NU	PERI